이번에 성공한 계산은 다음 두 적분입니다. 특히 아래 적분은 처음 본 때가 2008년 6월 13일이었고, 가끔 생각날 때마다 끄적였으나 실패했던 적분이니, 거의 16개월만에 풀어낸 셈이군요. 이런 걸 보면 저도 아직 멀고 멀었나 봅니다. 두 적분에 대한 계산은, 자세하게 풀어서 적어드리고 싶지만 제게 허락된 시간이 거의 없는 관계로 각각 * 수학 노트 : #005 * 수학 노트 : #003 을 참조하세요.
아, 자대에서는 아무래도 시간도 없고, 갖고 들어온 잡지(Scientific American, Nature 등)나 소설책(잘린머리 사이클)도 읽어야 하니 뭔가 멋진 계산을 할 시간이 없군요. 그리고 검산할 시간도 부족하네요. 그래서 아래 계산은 솔직히 허접하기도 하고 아직 검산도 못 해봤습니다. 그래도 이등병이 싸지방을 이용할 수 있는 유일하게 허락된 이 시간을 빌려 블로그의 정체를 막기 위한 발악은 해봐야겠습니다. 오늘도 역시 속사포 계산입니다. -_- 단, 여기서 다음 등식 을 사용했으며, 위 등식에서 무한합은 대칭적으로, 즉 -N부터 N까지의 합에 N→∞을 취한 것입니다. (2009/09/20) 위 값을 최종적으로 계산해보면 1/cosh(πω) 가 됩니다. 즉, 이 함수는 푸리에 변환에 대해 불변입..
여러분들도 군대에 오시면 이런 계산을 할 수 있습니다...? 오늘 보이려고 하는 계산은 다음 두 극한값을 계산하는 과정이다. 우선 두 계산에 공통적으로 사용될 사실들을 몇 가지만 따로 떼어서 보조정리로 정리해보도록 합시다. 보조정리 1 이다. 증명) 간단한 계산이다. a > 0 일 때 공식 이 성립함을 이용하면 보조정리 2 임의의 실수 a에 대하여 이다. 증명) f(t) = 2t - 1 - t 로 두면, f(1) = 0 이고 t ≥ 1 일 때 f'(t) = 2t log 2 - 1 ≥ 2 log2 - 1 > 0 이므로, 2t ≥ 1 + t 이 성립한다. 그러므로 이고 맨 오른쪽 항이 n→∞ 일 때 0으로 수렴함은 당연하므로, 증명된다. 보조정리 3 로 두면, 0 ≤ x ≤ 1 일 때 이 성립한다. 증명) ..
군대에서도 짬이 생기면 이런 계산을 할 수 있다는 것을 보여드리고 싶었습니다! 오늘 계산할 적분은 다음 적분입니다: 단, p, q > 0 이고 1-p < r < 1+min(p,q) 입니다. 우선 r이 0이 아니라고 가정하고 이 적분을 계산해봅시다. 그러면 간단한 계산과정을 통해 감마함수를 포함하는 닫힌 식을 얻습니다. 그리고 I(r)의 연속성을 이용하여 r→0 의 극한을 취하면 I(0) 의 값을 얻고, 실제로 계산해보면 라는 결론을 얻습니다. 단, γ는 오일러-마스케로니 상수입니다.
Today we are going to prove the unproven assertion in the previous posting 「오늘의 계산 16」, and also establish a proof of the observation in 「여러가지 잡담」. Theorem. Let $\alpha$ be a complex number away from negative integers, and denote \begin{equation*} \binom{\alpha}{z} := \frac{\alpha!}{z!(\alpha-z)!} = \frac{\Gamma(\alpha+1)}{\Gamma(z+1)\Gamma(\alpha-z+1)} \end{equation*} the extended binomial coef..
요즘 GRE 공부때문에 수학에 손 댈 기회가 더더욱 없어서 우울한 차에, 오랜만에 주말을 맞아 본격적으로 웹서핑 좀 하다가 쉽고 재미있는 문제를 발견해서 한번 풀어봤습니다. 첫 번째 계산은 위의 계산입니다. 단, 여기서 입니다. 위 사실들을 참이라고 가정하면, a > 1 일 때 성립하는 등식 에 a = 2 를 대입하여 다음 등식을 얻어냅니다. 이제 첫 번째 식의 수렴성을 증명하고 이 식의 값을 계산하는 일만 남았습니다. 우선 계산에 앞서, 보조정리 하나를 증명해봅시다. Lemma 만약 f가 C1[a,b]에 속하면, 다음 식이 성립한다. proof. 함수 F를 이라고 두자. n을 고정하고, Δx = (b-a)/n 과 xk = a + kΔx 로 두자. 그러면 Taylor 정리에 의해서, 적당한 가 존재하여,..
이번 「오늘의 계산」 포스팅은, 어떤 의미에서는 계산 자랑이라기보다 오히려 좋은 풀이에 대한 현상수배라는 의미가 강합니다. [문제] a>0 이고 f : [0, a] → R 가 연속일 때, 다음 등식이 성립함을 보여라. 제 풀이는 일단 [여기]를 보시면 됩니다. 보다시피 좀 많이 지저분하고, 무엇보다도 문제의 본질을 비켜간 풀이가 아닌가 하는 의심을 하고 있습니다. 만약 저 문제에 대한 좋은 풀이를 아시거나 답이 저렇게 되어야 하는 근본적인 이유를 아시는 분이 있다면 주저말고 댓글을 달아주세요. 그럴듯한 답변을 해주신 분에게는 므흣한 이미지를 보내드립니다. ...어?
어제 친한 형과 대화하던 도중 나온 적분문제인데, 대수위상 시험도 끝났겠다 해서 푹 자고 일어나서 한번 계산해봤습니다. 그리고 요즘 마침 MathLinks에서 적분 떡밥이 안 올라오는 터에 좋은 기회다 싶어서, 이 허접한 계산을 포스팅 거리로 삼아봤습니다. 어디서 이런 입가심거리도 안되는 계산따위를 올리냐! 하고 구박하셔도 할 말은 없지만, 그렇다고 블로그가 정체되는 것도 좀 거시기해서 말이죠 -.-a 실수 0
오늘은 어렵지 않은 계산 두 개를 올립니다. [문제] 관계 을 만족하는 수열에 대하여 극한 의 값을 구하여라. [풀이] 라고 두자. 그러면 간단한 식 조작에 의하여 다음이 성립함을 보일 수 있다. 따라서 이라고 둘 수 있고, 초기조건에 의해 이 상수수열의 값은 이 된다. 그러므로, [문제] 과 의 값을 구하여라. [풀이] 이라고 두자. 그러면 에 의해, 다음 식이 성립한다. 그러므로 첫 번째 무한곱을 구하기 위해서는 다음 식의 일 때의 극한값을 구하는 것으로 충분하다. (주의: 아래 식의 극한값의 역수가 우리가 원하는 답이 됨에 주의하자.) 그런데 감마함수 반사공식에 의해 이고, 감마함수의 성질로부터 이므로, 첫 번째 무한곱은 다음과 같이 주어진다. 두 번째 무한곱도 거의 비슷한 방법을 이용하여 계산하면..
개학하고 나니까 귀차니즘이 해소되기는커녕 한층 더 강력해졌습니다. 포스팅도 다시 뜨문뜨문 시절로 돌아갈 것 같은 불안감이 듭니다. 오늘도 귀차니즘이 풀풀 솟아나기 때문에, 오늘은 굉장히 평범한 적분을 소개해드리겠습니다. 오늘 소개할 식은 다음 적분입니다. (단, a > 0) 사실 굉장히 평범한 적분이죠. 이것을 소개하는 이유는, 하나의 적분을 계산하는 여러가지 방법이 있다는 것을 살펴보고 싶기 때문입니다. 그러므로 이번 포스트는 어떠한 감흥을 주지 않는, 평범한 '자잘한 계산 테크닉의 소개' 정도에 그치겠습니다. [방법 1] 테일러 전개의 유일성을 이용한 방법 : 다음과 같이 식을 정리한 다음, 각 항의 계수들을 비교한다. [방법 2] 코시 적분공식을 이용한 방법 : 항상 그래왔던 것처럼, 윗쪽 반원에 ..
오늘 계산할 적분은 이것입니다. 단, 여기서 팩토리얼은 감마함수를 이용하여 정의된 것으로 해석합니다. 적분이 아니라 합이라면 위 식이 성립하는 건 n이 음이 아닌 정수일 때 바로 따라나오는 내용입니다. 그렇지만 적분에 대해서도 같은 결과가 성립한다는 건 좀 신기한 결과죠. 사실 수치해석적인 계산을 이용하면 위 식이 임의의 음이 아닌 실수 n에 대해 성립함을 짐작할 수 있지만, 일단 제가 계산에 성공한 것은 n이 음이 아닌 정수일 때뿐입니다. 증명은 감마함수의 반사공식을 이용합니다. 계산해보면, 가 되므로 증명됩니다. 사실은 임의의 0 이상의 실수 n에 대해 다음 등식이 성립한다고 믿고 있습니다만, 수치적인 계산상의 심증은 있어도 실제로 증명은 아직 못 했습니다. p.s. 2009/3/17 일에 이 문제를..
더운 방 안에 쳐박혀서 땀을 뻘뻘 흘리며 1시간 반 동안 계산한 끝에 얻은 결과입니다. 마치 프라모델광이 방에 쳐박혀 프라모델을 조립해 어엿한 1/100 MG 자×를 만들어내는 것과 비슷한 마음으로 풀었습니다. (이녀석, 위험하다... (˚;ε;˚;)a) 단, 여기서 γ1은 스틸체스 상수(Stieltjes constant) 입니다. 이런 상수가 있다는 건 알고 있었지만, 실제로 계산할 때에 바로 이 상수가 저 자리에 들어간다는 걸 깨닫지는 못했습니다. 그래서 이 상수의 값을 결정하기 위해 1시간동안 삽질을 했죠. 원래 제가 얻은 결과는 입니다. 단, 입니다. 처음 1시간동안은 c가 closed form으로 나타날 거라고 믿고 계산질을 했지만, 결과는 ㅇ
첫 번째 적분은 쉽게 계산됩니다. 문제는 두 번째 적분입니다. 사실 첫 번째 적분을 잘못 계산하는 과정에서 두 번째 적분을 계산하게 되었는데, 이 어떻게 주어지는가를 프로그램으로 관찰하다가 우연히 저 등식이 성립함을 알아냈습니다. 그런 의미에서 아직까지 두 번째 적분은 계산을 못 한 것이죠. 열심히 끙끙거리고 있지만 신통치 않군요 -_-;; 드디어 미성숙한 계산에 끝을 볼 때가 왔습니다. 오늘 열심히 펜을 굴린 덕에 마침내 두 번째 등식을 증명하는 데 성공했습니다. 하지만 본론에 들어가기 앞서, 이를 위한 몇 가지 사전준비가 필요합니다. 우선은 다음 등식입니다. 증명은 아주 쉬우므로 패스하도록 하겠습니다. 다음으로 여러분께서 Li2, 즉 dilogarithm의 정의와 아주 기초적인 성질 정도는 알고 계신..
어떤 부등식을 보이려다가 우연히 얻어냈는데, 의외로 여러 계산에서 사용할만 하여 여기 올립니다. (나중에 안 사실이지만, 사실상 이 적분은 확장된 이항계수의 푸리에 변환과 직접적으로 연관됩니다. 풀이는 다른 포스팅을 참고하세요) [명제] p > -1 이고 x가 임의의 복소수일 때 다음 등식이 성립한다. 증명의 스케치는 다음과 같습니다. Step 1) 함수족 을 다음과 같이 정의하면, 는 p→∞일 때 에서의 approximation to the identity 이다. Step 2) 함수 를 와 같이 정의하면, p > 1 일 때 다음 등식이 성립한다. 그 다음에 두 스텝을 섞으면 원하는 결론이 도출됩니다. 위 등식에서 p = 0 으로 두면 바로 sinh 의 무한곱 표현이 나오고, p = 1 으로 두면 cos..
- Total
- Today
- Yesterday
- 렌
- 린
- 감마함수
- 해석학
- 미쿠
- 계산
- 대수기하
- Fourier Transform
- 보컬로이드
- Coxeter
- Gamma Function
- 푸리에 변환
- Beta function
- 노트
- 적분
- 오일러 적분
- 제타함수
- Integral
- infinite summation
- 이항계수
- 편미방
- Zeta function
- 수학
- 오일러 상수
- binomial coefficient
- 무한급수
- 루카
- 유머
- Euler constant
- Euler integral
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |