드디어 qual 을 끝내고 나니, 이젠 개강이 내일이네요. 허허허, 쉴 틈이 없구나… 아래 명제는 제가 직접 푼 건 아니지만 그 내용이 마음에 들어서 한번 올려봅니다. Glasser 마스터 정리.[1] 상수 $\rho_{1}, \ldots, \rho_{n} > 0$ 와 $\alpha_{1}, \ldots, \alpha_{n}, \beta \in \mathbb{R}$ 이 주어졌다고 하자. 그러면 다음과 같이 정의된 함수 $$ \phi(x) = x - \beta - \sum_{i=1}^{n} \frac{\rho_{i}}{x - \alpha_{i}} $$ 는 $\mathbb{R}$ 위의 르벡 측도 $\operatorname{Leb}$ 를 보존한다. 즉, 임의의 르벡 측도가능한 집합 $E \subseteq \m..
더운 방 안에 쳐박혀서 땀을 뻘뻘 흘리며 1시간 반 동안 계산한 끝에 얻은 결과입니다. 마치 프라모델광이 방에 쳐박혀 프라모델을 조립해 어엿한 1/100 MG 자×를 만들어내는 것과 비슷한 마음으로 풀었습니다. (이녀석, 위험하다... (˚;ε;˚;)a) 단, 여기서 γ1은 스틸체스 상수(Stieltjes constant) 입니다. 이런 상수가 있다는 건 알고 있었지만, 실제로 계산할 때에 바로 이 상수가 저 자리에 들어간다는 걸 깨닫지는 못했습니다. 그래서 이 상수의 값을 결정하기 위해 1시간동안 삽질을 했죠. 원래 제가 얻은 결과는 입니다. 단, 입니다. 처음 1시간동안은 c가 closed form으로 나타날 거라고 믿고 계산질을 했지만, 결과는 ㅇ
오늘 보일 식은 다음 적분 입니다. 이 적분 정방향으로 공격하는 것은 꽤나 어려워 보이므로, 여기에서는 간접적인 방법으로 위 식을 증명해보도록 하겠습니다. 우선, 등식 이 성립한다고 가정합시다. 양 변을 적분해서 정리해보면 이므로, 원래 적분식이 증명됩니다. 이제 맨 처음의 식이 참임을 보이는 것만 남았습니다. 이를 보이기 위하여, 처음 식의 좌변을 와 같이 둡시다. 그리고 이 식의 테일러 전개를 계산해보면 이고 이므로, 를 얻습니다. 마지막 등식은 제 이전 포스트에서 lnΓ(1+x) 의 테일러가 어떻게 나타나는지를 확인해보면 쉽게 확인할 수 있습니다. 따라서 증명되었습니다. 부수적으로 다음 결과들을 얻습니다. (1) 첫 번째 등식을 0에서 s까지 적분한 다음 몇 가지 간단한 조작을 하면 다음 식도 얻습..
인터넷을 뒤지다 보면 종종 입실론-델타 논법(이하 ε-δ)을 물어보는 사람들이 있다. ε-δ이란 걸 전혀 들어보지 못한 상태에서 물어보는 경우도 있지만, 어떤 때에는 이미 ε-δ를 한 번쯤은 접해봤는데도 불구하고 그 말의 의미를 이해하지 못하여 질문하는 경우도 있는 것 같다. 지금의 나로써는 ε-δ가 굉장히 당연하게 와닿지만, 나도 사실 처음에 ε-δ의 정의를 봤을 땐 이해가 잘 안됬던 것 같다. 물론 평범한 고등학생이 굉장히 수학적이고 형식적인 것처럼 보이는 문장을 처음부터 쉽게 읽으면 그것도 나름대로 신기하긴 하겠지만…. 어쨋든, 이 글은 ε-δ를 좀 더 마음속으로 이해할 수 있도록 설명하는 방법을 찾기 위한 내 몸부림이다. 우선 정의부터 살펴보자. ε-δ를 이용한 극한의 정의는 다음과 같다. [정의..
- Total
- Today
- Yesterday
- Gamma Function
- 무한급수
- 오일러 상수
- Zeta function
- 대수기하
- Coxeter
- Euler constant
- 수학
- infinite summation
- 미쿠
- 감마함수
- Beta function
- 유머
- 노트
- binomial coefficient
- 린
- 편미방
- 푸리에 변환
- 오일러 적분
- 렌
- 해석학
- 적분
- 이항계수
- Fourier Transform
- 계산
- 제타함수
- Euler integral
- Integral
- 보컬로이드
- 루카
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |