블로그의 정체를 막기 위해 오늘도 쉬운 계산 몇 가지를 적어보고자 합니다. [계산 1] α, β > 0 일 때 다음 계산이 성립합니다. 여기서 특별한 설명이 필요한 부분은 (1)에서 (4)에 해당하는 부분입니다. 우선 (1)은 제가 예전에 올린 글 중에서 적분의 교환가능성을 약간 확장한 것에 대한 글을 참조하시면 됩니다. 그리고 (2)와 (3)은 Lebesgue's dominated convergence theorem을 적용하면 되고, (4)는 감마함수의 미분으로부터 유도됩니다. [계산 2] 역시 쉬운 계산입니다. 오일러 적분의 일종이죠. 앗흥~
Problem. Evaluate the following integral. \begin{equation}\label{eqn:wts} \int_{0}^{1} \log (1-x) \log x \log (1+x) \; dx \end{equation} We divide the solution into several steps. 1. Reduction to Euler series. The key ingredient for the reduction is the following integral. \begin{equation*} \int_{0}^{\frac{\pi}{2}} \sin^{p} \theta \cos^{q} \theta \log \sin\theta \log \cos\theta \; d\theta. \end{..
이번에 성공한 계산은 다음 두 적분입니다. 특히 아래 적분은 처음 본 때가 2008년 6월 13일이었고, 가끔 생각날 때마다 끄적였으나 실패했던 적분이니, 거의 16개월만에 풀어낸 셈이군요. 이런 걸 보면 저도 아직 멀고 멀었나 봅니다. 두 적분에 대한 계산은, 자세하게 풀어서 적어드리고 싶지만 제게 허락된 시간이 거의 없는 관계로 각각 * 수학 노트 : #005 * 수학 노트 : #003 을 참조하세요.
- Total
- Today
- Yesterday
- 감마함수
- Euler integral
- 이항계수
- 유머
- Fourier Transform
- 대수기하
- infinite summation
- 편미방
- 적분
- 제타함수
- Zeta function
- 루카
- 수학
- Integral
- 무한급수
- 보컬로이드
- 미쿠
- 린
- 노트
- 계산
- 푸리에 변환
- 해석학
- binomial coefficient
- 렌
- Beta function
- 오일러 적분
- 오일러 상수
- Euler constant
- Gamma Function
- Coxeter
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |