While calculating a specific problem, I succeeded in proving a more general problem. Proposition. For $0 < r < 1$ and $r < s$, the following holds:[1] \begin{equation} \label{eq_wts} \int_{-1}^{1} \frac{1}{x} \sqrt{\frac{1+x}{1-x}} \log \left| \frac{1 + 2rsx + (r^{2} + s^{2} - 1)x^{2}}{1 - 2rsx + (r^{2} + s^{2} - 1)x^{2}} \right| \, dx = 4\pi \arcsin r. \end{equation} Proof. We divide the proof ..
나흘 연휴의 절반이 지나가는 동안 한 거라곤 폐인짓밖에 없네…. 공부해야지~ Proposition. The following holds:[1] \begin{equation*} \tag{1} \int_{0}^{\frac{\pi}{2}} \arctan ( r \sin\theta ) \arctan ( s \sin\theta ) \, d\theta = \pi \chi_{2}(\alpha \beta), \end{equation*} where \begin{align*} \alpha = \frac{\sqrt{r^{2} + 1} - 1}{r}, \quad \beta = \frac{\sqrt{s^{2} + 1} - 1}{s} \end{align*} and $\chi_{2}$ is the Legendre chi funct..
Take Home Exam을 풀어야 하는데, 나는 이런 거나 계산하고 있을 뿐이고…. Proposition. The following holds:[1] \begin{align*} \sum_{n=1}^{\infty} \frac{H_{n}^{2}}{n^{2}} = \frac{17\pi^{4}}{360}. \end{align*} Proof. See the reference [1] below. Remark. This identity was first conjectured by Enrico Au-Yeung, a student of Jonathan Borwein, using computer search and the PSLQ algorithm, in 1993.[2] It is subsequently solved b..
- Total
- Today
- Yesterday
- 린
- Coxeter
- 미쿠
- 이항계수
- 루카
- Euler integral
- Beta function
- Fourier Transform
- 푸리에 변환
- 해석학
- 수학
- 적분
- Integral
- 보컬로이드
- 유머
- 감마함수
- binomial coefficient
- 대수기하
- 노트
- infinite summation
- 제타함수
- 편미방
- 계산
- Euler constant
- 렌
- Gamma Function
- 오일러 적분
- 무한급수
- Zeta function
- 오일러 상수
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |