티스토리 뷰
나흘 연휴의 절반이 지나가는 동안 한 거라곤 폐인짓밖에 없네…. 공부해야지~
Proposition. The following holds:[1]
\begin{equation*}
\tag{1}
\int_{0}^{\frac{\pi}{2}} \arctan ( r \sin\theta ) \arctan ( s \sin\theta ) \, d\theta
= \pi \chi_{2}(\alpha \beta),
\end{equation*}
where
\begin{align*}
\alpha = \frac{\sqrt{r^{2} + 1} - 1}{r}, \quad
\beta = \frac{\sqrt{s^{2} + 1} - 1}{s}
\end{align*}
and $\chi_{2}$ is the Legendre chi function.
Proof. See the reference [1] below.
Remark. This result extends my previous result. You can check this by taking the limit $s \to \infty$ to $\text{(1)}$.
Mathematica also suggests that the following holds:
Conjecture. Let
\begin{align*}
A = \{ 1, 3, 5, 7, \ldots \}^4
\end{align*}
be the set of quadruples of odd natural numbers. Then the series expantion of the integral
\begin{align*}
\int_{0}^{\frac{\pi}{2}} \arctan \left( \frac{2x \sin\theta}{1-x^{2}} \right) \arctan \left( \frac{2y \sin\theta}{1-y^{2}} \right) \arctan \left( \frac{2z \sin\theta}{1-z^{2}} \right) \arctan \left( \frac{2w \sin\theta}{1-w^{2}} \right) \, d\theta
\end{align*}
is given by
\begin{align*}
\frac{\pi}{2} \sum_{\alpha \in A} (-1)^{|\alpha|/2} d(\alpha) \frac{x^{\alpha_{1}}}{\alpha_{1}} \frac{y^{\alpha_{2}}}{\alpha_{2}} \frac{z^{\alpha_{3}}}{\alpha_{3}} \frac{w^{\alpha_{4}}}{\alpha_{4}},
\end{align*}
where $d(\alpha)$ denotes the number of choices of signatures so that
\begin{align*}
\pm \alpha_{1} \pm \alpha_{2} \pm \alpha_{3} \pm \alpha_{4} = 0.
\end{align*}
Upon reordering $\alpha$ so that $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \alpha_{4}$, this equals
\begin{align*}
(-1)^{|\alpha|/2} d(\alpha)
= \begin{cases}
6, & \alpha_{1} = \alpha_{2} = \alpha_{3} = \alpha_{4}, \\
4, & \alpha_{1} = \alpha_{2} < \alpha_{3} = \alpha_{4}, \\
2, & \alpha_{1} + \alpha_{4} = \alpha_{2} + \alpha_{3} \text{ and } \alpha_{1} < \alpha_{2}, \\
-2 & \alpha_{1} + \alpha_{2} + \alpha_{3} = \alpha_{4}.
\end{cases}
\end{align*}
References
- Total
- Today
- Yesterday
- Integral
- 미쿠
- 렌
- 보컬로이드
- Gamma Function
- Euler constant
- 편미방
- 푸리에 변환
- 린
- 수학
- Fourier Transform
- 유머
- 해석학
- 무한급수
- 루카
- infinite summation
- 오일러 적분
- 계산
- binomial coefficient
- 이항계수
- 적분
- 노트
- Coxeter
- 대수기하
- 감마함수
- 오일러 상수
- 제타함수
- Euler integral
- Beta function
- Zeta function
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |