티스토리 뷰

나흘 연휴의 절반이 지나가는 동안 한 거라곤 폐인짓밖에 없네…. 공부해야지~


Proposition. The following holds:[1]

(1)0π2arctan(rsinθ)arctan(ssinθ)dθ=πχ2(αβ),

where

α=r2+11r,β=s2+11s

and χ2 is the Legendre chi function.

 

Proof. See the reference [1] below.

 

Remark. This result extends my previous result. You can check this by taking the limit s to (1).


Mathematica also suggests that the following holds:


Conjecture. Let

A={1,3,5,7,}4

be the set of quadruples of odd natural numbers. Then the series expantion of the integral

0π2arctan(2xsinθ1x2)arctan(2ysinθ1y2)arctan(2zsinθ1z2)arctan(2wsinθ1w2)dθ

is given by

π2αA(1)|α|/2d(α)xα1α1yα2α2zα3α3wα4α4,

where d(α) denotes the number of choices of signatures so that

±α1±α2±α3±α4=0.

Upon reordering α so that α1α2α3α4, this equals

(1)|α|/2d(α)={6,α1=α2=α3=α4,4,α1=α2<α3=α4,2,α1+α4=α2+α3 and α1<α2,2α1+α2+α3=α4.


References

  1. Zakharia Stanley, Integral 01arctan2x1x2dx - Math StackExchange

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함