Problem 1. Prove that[각주:1] \begin{equation*} \sum_{n=1}^{\infty} \frac{1}{n^4 \binom{2n}{n}} = \frac{17\pi^4}{3240}. \tag{1} \end{equation*} Proof. We divide the proof into several steps. 1. Reduction to an integral representation Let $S$ denote the summation in question. By using the Lemma 1 in Today's Calculation 29, we can represent $S$ as an integral. Then by the successive application of i..
Problem 1. Show that[각주:1] \begin{equation*} \int_{0}^{\infty} x \left\{ (2S(x) - 1)^2 + (2C(x) - 1)^2 \right\}^{2} \, \mathrm{d}x = \frac{16 \log 2 - 8}{\pi^2}, \tag{1} \end{equation*} where $S(x)$ and $C(x)$ denote the Fresnel integrals defined by \begin{align*} S(x) = \int_{0}^{x} \sin \left( \tfrac{1}{2} \pi t^2 \right) \, \mathrm{d}t \quad \text{and} \quad C(x) = \int_{0}^{x} \cos \left( \t..
Problem 1. Show that[각주:1] the product \begin{equation*} P = \left( \frac{2}{1} \right)^{\frac{1}{8}} \left( \frac{2 \cdot 2}{1 \cdot 3} \right)^{\frac{3}{16}} \left( \frac{2 \cdot 2 \cdot 2 \cdot 4}{1 \cdot 3 \cdot 3 \cdot 3} \right)^{\frac{6}{32}} \left( \frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{1 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5} \right)^{\frac{10..
- Total
- Today
- Yesterday
- 미쿠
- 계산
- Fourier Transform
- 편미방
- 루카
- 푸리에 변환
- 제타함수
- 무한급수
- 적분
- 유머
- binomial coefficient
- 오일러 적분
- Euler integral
- 이항계수
- 해석학
- Beta function
- 노트
- 감마함수
- 보컬로이드
- 오일러 상수
- 린
- Euler constant
- Coxeter
- Integral
- Zeta function
- 렌
- infinite summation
- Gamma Function
- 대수기하
- 수학
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |