티스토리 뷰
Problem 1. Show that[각주:1]
where
Proof. We divide the proof into several steps.
1. Reduction of the integral
Let
where
we can write
where
2. Simplification of
Now we want to simplify
Using this identity,
Thus by the polar coordinate change
Evaluation of the inner integral is easy, and we obtain
Applying
Here, we exploited the identity
which can be proved by differentiating both sides with respect to
3. Evaluation of
Plugging
Now let us denote
Then a simple calculation shows that
Indeed, both the contour integration method or the partial fraction decomposition method work here. Integrating, we have
Plugging this to
where
Therefore it follows that
where
References
- Total
- Today
- Yesterday
- Zeta function
- Beta function
- 편미방
- infinite summation
- 보컬로이드
- 오일러 적분
- 감마함수
- 계산
- Integral
- 유머
- 루카
- Coxeter
- 해석학
- 렌
- Euler constant
- Euler integral
- 미쿠
- 노트
- 수학
- 푸리에 변환
- Gamma Function
- binomial coefficient
- 오일러 상수
- 무한급수
- 적분
- 린
- 제타함수
- 대수기하
- Fourier Transform
- 이항계수
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |