티스토리 뷰

Problem 1. Show that[각주:1]

(1)0x{(2S(x)1)2+(2C(x)1)2}2dx=16log28π2,

where S(x) and C(x) denote the Fresnel integrals defined by

S(x)=0xsin(12πt2)dtandC(x)=0xcos(12πt2)dt.

 

Proof. We divide the proof into several steps.

1. Reduction of the integral

Let I denote the integral in question. With the change of variable v=πx22, we have

I=1π0{(12C(x))2+(12S(x))2}2dv

where x=2v/π is understood as a function of v. By noting that

12S(x)=2πvsinuuduand12C(x)=2πvcosuudu,

we can write I as

(2)I=4π30|A(v)|4dv

where A(v) denotes the function defined by

A(v)=veiuudu.

2. Simplification of |A(v)|2

Now we want to simplify |A(v)|2. To this end, we note that for u>0,

(3)1u=1Γ(12)Γ(12)u1/2=1π0euxxdx=2π0eux2dx

Using this identity,

A(v)=2πveiu0eux2dxdu=2π0ve(x2i)ududx=2eivπ0evx20e(x2i)ududx=2eivπ0evx2x2idx.

Thus by the polar coordinate change (x,y)(r,θ) followed by the substitutions r2=s and tanθ=t, we obtain

|A(v)|2=A(v)A(v)=4π00ev(x2+y2)(x2i)(y2+i)dxdy=4π00π2revr2(r2cos2θi)(r2sin2θ+i)dθdr=2π00π2evs(scos2θi)(ssin2θ+i)dθds=2π0evss0π2(1scos2θi+1ssin2θ+i)dθds=2π0evss0(1si(t2+1)+1st2+i(t2+1))dtds.

Evaluation of the inner integral is easy, and we obtain

|A(v)|2=20evss(i1+is)ds.

Applying (3) again, we find that

|A(v)|2=20evss(iπ0e(1+is)uudu)ds=2π0evss0eusin(su)ududs=2π0euu0sin(su)sevsdsdu=2π0euuarctan(uv)du(4)=4vπ0evx2arctan(x2)dx(u=vx2)

Here, we exploited the identity

0sinxxesxdx=arctan(1s),

which can be proved by differentiating both sides with respect to s.

3. Evaluation of I

Plugging (4) to (2) and applying the polar coordinate change, I reduces to

I=64π4000vev(x2+y2)arctan(x2)arctan(x2)dxdydv=64π400arctan(x2)arctan(x2)(x2+y2)2dxdy=64π40π20arctan(r2cos2θ)arctan(r2sin2θ)r3drdθ(5)=32π40π20arctan(scos2θ)arctan(ssin2θ)s2dsdθ.(s=r2)

Now let us denote

J(u,v)=0arctan(us)arctan(vs)s2ds.

Then a simple calculation shows that

2Juv(u,v)=0ds(u2s2+1)(v2s2+1)=π2(u+v).

Indeed, both the contour integration method or the partial fraction decomposition method work here. Integrating, we have

J(u,v)=π2{(u+v)log(u+v)uloguvlogv}.

Plugging this to (5), it follows that

I=64π30π2sin2θlogsinθdθ=16π3βz(32,12)

where β(z,w) is the beta function, satisfying the following beta function identity

β(z,w)=20π2sin2z1θcos2w1θdθ=Γ(z)Γ(w)Γ(z+w).

Therefore it follows that (1) reduces to

I=16π3Γ(32)Γ(12)Γ(2){ψ0(2)ψ0(32)}=8π201xx1xdx=8(2log21)π2,

where ψ0(z)=Γ(z)Γ(z) is the digamma function, satisfying the following identity

ψ0(z+1)=γ+011xz1xdx.

References

  1. Marty Colos, An integral involving Fresnel integrals - Math StackExchange [본문으로]

 

 

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함