티스토리 뷰
While calculating a specific problem, I succeeded in proving a more general problem.
Proposition. For
Proof. We divide the proof into several steps.
Step 1. (Case reduction by analytic continuation)
We first remark that given
Indeed, it is not hard to check if we utilize the following equality
Then
Step 2. (Integral representation of )
Put
where in the last line we utilized the substitution
then by the property
where we choose the branch cut of
Step 3. (Residue calculation)
Now let
by replacing the contour of integration by a semicircle of sufficiently large radius, it follows that
But by a simple calculation, together with the condition
So we have
and therefore
This completes the proof.
참고문헌
- Laila Podlesny, Integral
- Math StackExchange
- Total
- Today
- Yesterday
- Fourier Transform
- infinite summation
- Coxeter
- 감마함수
- 린
- 보컬로이드
- 이항계수
- 오일러 상수
- 미쿠
- 렌
- Gamma Function
- Zeta function
- 푸리에 변환
- Beta function
- 루카
- 제타함수
- 해석학
- Euler integral
- 유머
- 계산
- 무한급수
- 노트
- 적분
- binomial coefficient
- 대수기하
- 수학
- Euler constant
- 오일러 적분
- Integral
- 편미방
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |