티스토리 뷰

Here I post my solutions to the announced four integrals. I tacitly assumed some formulas to be granted, so to reduce unnecessary calculations that are attainable in regular courses in analysis. One exception to this convention is the detailed proofs for the identity \begin{equation*} \int_{0}^{\infty} \frac{\cos x}{x^2 + \beta^2} \; dx = \frac{\pi}{2\beta} e^{-\beta} \end{equation*} for $\beta \geq 0$, or equivalently \begin{equation*} \int_{0}^{\infty} \frac{\cos \alpha x}{x^2 + \beta^2} \; dx = \frac{\pi}{2\beta} e^{-\alpha \beta} \end{equation*} for $\alpha, \beta > 0$, which you can find in this unfinished document.

 

1st Integral. Show that for $\alpha \geq 0$, \begin{equation}\label{int1:wts} \int_{-\infty}^{\infty} \frac{\sin (\alpha \tan x)}{x} \; dx = \pi \left( 1 - e^{-\alpha} \right). \end{equation}
Solution.

This integral requires the following identity \begin{equation} \label{int1:cot} \sum_{n=-\infty}^{\infty} \frac{x}{x^2 - n^2\pi^2} = \cot x. \end{equation} Define \begin{equation} \label{int1:in} I(n) := \int_{n\pi -\frac{\pi}{2}}^{n\pi + \frac{\pi}{2}} \frac{\sin (\alpha \tan x)}{x} \; dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin (\alpha \tan x)}{x + n \pi} \; dx. \end{equation} Then \eqref{int1:in} is absolutely convergent, and we have $I(n) = I(-n)$ by symmetry. Thus \begin{equation*} I(n) = \frac{1}{2}\left( I(n) + I(-n) \right) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x \sin (\alpha \tan x)}{x^2 - n^2 \pi^2} \; dx. \end{equation*} Since \begin{equation*} \frac{x}{x^2 - n^2 \pi^2} = O \left( n^{-2} \right) \end{equation*} on $[-\tfrac{\pi}{2}, \tfrac{\pi}{2}]$, applying \eqref{int1:cot} shows that \begin{align*} \int_{0}^{\left( N + \frac{1}{2} \right)\pi} \frac{\sin (\alpha \tan x)}{x} \; dx & = \frac{1}{2} \left( I(-N) + \cdots + I(N) \right) \\ & = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \sum_{n=-N}^{N} \frac{x}{x^2 - n^2 \pi^2} \right) \sin (\alpha \tan x) \; dx \\ & = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \cot x + O \left( N^{-1} \right) \right) \sin (\alpha \tan x) \; dx \\ & = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin (\alpha \tan x)}{\tan x} \; dx + O \left( N^{-1} \right). \end{align*} Taking $N \to \infty$ proves that \eqref{int1:wts} converges, and moreover \begin{align*} \int_{-\infty}^{\infty} \frac{\sin (\alpha \tan x)}{x} \; dx & = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin (\alpha \tan x)}{\tan x} \; dx \\ & = \int_{-\infty}^{\infty} \frac{\sin \alpha t}{t (t^2 + 1)} \; dt \qquad (t = \tan x) \\ & = \int_{-\infty}^{\infty} \frac{\sin \alpha t}{t} \; dt - \int_{-\infty}^{\infty} \frac{t \sin \alpha t}{t^2 + 1} \; dt \\ & = \pi \left(1 - e^{-\alpha} \right), \end{align*} as desired.

2nd Integral. Show that \begin{equation} \label{int2:wts} \int_{-\infty}^{\infty} \sin x \arctan\left( \frac{1}{x} \right) \; dx = \pi \left( 1 - \frac{1}{e} \right). \end{equation}
Solution. The integral \eqref{int2:wts} is easiest among the four. Simply taking integration by parts, we obtain \begin{align*} \int_{-\infty}^{\infty} \sin x \arctan\left( \frac{1}{x} \right) \; dx & = 2 \int_{0}^{\infty} \sin x \arctan\left( \frac{1}{x} \right) \; dx \\ & = \left. 2 (1 - \cos x) \arctan\left( \frac{1}{x} \right) \right|_{0}^{\infty} + 2 \int_{0}^{\infty} \frac{1 - \cos x}{1 + x^2} \; dx \\ & = \pi \left( 1 - \frac{1}{e} \right). \end{align*}
3rd Integral. Show that \begin{equation} \label{int3:wts} \int_{0}^{\infty} \frac{\left( 1 - e^{-6x} \right) e^{-x}}{x \left(1 + e^{-2x} + e^{-4x} + e^{-6x} + e^{-8x} \right)} \; dx = \log \left( \frac{3 + \sqrt{5}}{2} \right). \end{equation}
Solution. Let us define \begin{equation} \label{int3:is} I(s) = \int_{0}^{\infty} \frac{\left( 1 - e^{-2x} \right)\left( 1 - e^{-6x} \right)}{1 - e^{-10x}} \frac{e^{-sx}}{x} \; dx. \end{equation} It is clear that the integral \eqref{int3:wts} is equal to $I(1)$. By referring to the identity \begin{equation*} \psi_0 (s) \ = \ -\gamma + \sum_{n=0}^{\infty} \left( \frac{1}{n+1} - \frac{1}{n+s} \right), \end{equation*} hence differentiating \eqref{int3:is} gives \begin{align*} I'(s) & = - \int_{0}^{\infty} \frac{(1 - e^{-2x})(1 - e^{-6x})e^{-sx}}{1 - e^{-10x}} \; dx \\ & = - \int_{0}^{\infty} (1 - e^{-2x})(1 - e^{-6x})e^{-sx} \left( \sum_{n=0}^{\infty} e^{-10nx} \right) \; dx \\ & = - \sum_{n=0}^{\infty} \left( \frac{1}{10n + s} - \frac{1}{10n + s + 2} - \frac{1}{10n + s + 6} + \frac{1}{10n + s + 8} \right) \\ & = \frac{1}{10} \left[ \psi_0 \left( \frac{s}{10} \right) - \psi_0 \left( \frac{s+2}{10} \right) - \psi_0 \left( \frac{s+6}{10} \right) + \psi_0 \left( \frac{s+8}{10} \right) \right]. \end{align*} Since $I(\infty) = 0$, we have \begin{align*} I(1) & = \int_{\infty}^{1} I'(t) \; dt \\ & = \left. \log \left( \frac{\Gamma \left( \frac{t}{10} \right) \Gamma \left( \frac{t+8}{10} \right)}{\Gamma \left( \frac{t+2}{10} \right) \Gamma \left( \frac{t+6}{10} \right)} \right) \right|_{\infty}^{1} = \log \left( \frac{\Gamma \left( \frac{1}{10} \right) \Gamma \left( \frac{9}{10} \right)}{\Gamma \left( \frac{3}{10} \right) \Gamma \left( \frac{7}{10} \right)} \right) = \log \left( \frac{\sin \left( \frac{3\pi}{10} \right)}{\sin \left( \frac{\pi}{10} \right)} \right) \\ & = \log \left( \frac{ 3 + \sqrt{5}}{2} \right) \end{align*} and therefore \eqref{int3:wts} follows.
4th Integral. Show that for $\Re \alpha, \Re \beta \geq 0$ and $\alpha \neq 0$, we have \begin{equation} \label{int4:wts} \int_{-\infty}^{\infty} \exp\left( - \alpha x^2 - \frac{\beta}{x^2} \right) = \sqrt{\frac{\pi}{\alpha}} e^{-2\sqrt{\alpha \beta}}. \end{equation}
Solution. First we observe that it suffice to consider the case $\Re \alpha > 0$ and $\Re \beta > 0$ by limiting argument. Being analytic on this domain, we find that it suffices to prove \eqref{int4:wts} for $\alpha, \beta > 0$. Now let \begin{equation*} a = \sqrt{\frac{\alpha}{\beta}} \quad \text{and} \quad b = \sqrt{\alpha \beta}. \end{equation*} Let $I$ denote the integral \eqref{int4:wts}. Then by the substitutions \begin{equation*} s = \sqrt{a} \, x, \quad t = \frac{1}{s}, \quad \text{and} \quad u = t - \frac{1}{t}, \end{equation*} we have \begin{align*} I & = \int_{-\infty}^{\infty} \exp \left( -b\left( a x^{2}+ \frac{1}{ax^2} \right) \right) \; dx \\ & = \frac{1}{\sqrt{a}}\int_{-\infty}^{\infty}\exp\left(-b\left( s^{2}+\frac{1}{s^{2}}\right)\right)\; ds\\ & = \frac{2}{\sqrt{a}}\int_{0}^{\infty}\exp\left(-b\left( s^{2}+\frac{1}{s^{2}}\right)\right)\; ds\\ & = \frac{1}{\sqrt{a}} \bigg[ \int_{0}^{\infty}\exp\left(-b\left( s^{2} + \frac{1}{s^{2}}\right)\right)\; ds + \int_{0}^{\infty}\exp\left(-b\left( t^{2}+\frac{1}{t^{2}}\right)\right)\; \frac{dt}{t^2} \bigg]\\ & = \frac{1}{\sqrt{a}}\int_{0}^{\infty}\exp\left(-b\left( t^{2}+\frac{1}{t^{2}}\right)\right)\,\left( 1+\frac{1}{t^{2}}\right)\; dt\\ & = \frac{1}{\sqrt{a}}\int_{-\infty}^{\infty}\exp\left(-b\left( u^{2}+2\right)\right)\; du\\ & = \sqrt{\frac{\pi}{a b}}\, e^{-2b}, \end{align*} which completes the proof.
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함