
Some ways to calculate the characteristic function of the Cauchy

distribution

sos440

(sosintegral@naver.com)

July 12, 2011



Contents

1 Preliminaries 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A Brief Review on Real Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Lebesgue Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A Brief Review on Complex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Calculations 4

2.1 Method of Contour Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Method using Real Analysis - I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



Chapter 1

Preliminaries

1.1 Introduction

Our ultimate goal of this document is to introduce some ways to calculate the integral

I = I(α) =

∫ ∞
0

cosαx

x2 + 1
dx, (α ∈ R) (1.1)

which often arises in some areas of mathematics. The characteristic function of the standard Cauchy

distribution is a good example where we are led to evaluate (1.1).

There are various ways to achieve this goal known so far, amid which the method of contour integration

is most famous. But often they rely on some advance theories or cumbersome justifications, thus it would

be timely to review some materials that we need hereafter. Readers who are familiar to these concepts

may skip these supplementary sections.

1.2 A Brief Review on Real Analysis

The principal purpose of utilizing real analysis techniques here is to provide a theoretical background

for advanced calculus. This is epitomized by a set of theorems that allows us to interchange various

limiting operators, Leibniz’s integral rule for instance. So we focus on particular results that have direct

applications to this document, rather than self-contained reviews of a theory.

1.2.1 Uniform Convergence

You can refer to [3] for details and proofs appearing this subsection. This book is a gentle, yet powerful

and comprehensive introduction to analysis.

Definition 1. Let A ⊂ Rm and fk : A→ Rn be a sequence of functions such that for every ε > 0, there

is a positive integer L such that |fk(x)− f(x)| < ε for all x ∈ A and k ≥ L. Under these conditions, we

say that (fk) converges uniformly to f on A.

We will assume that fk and f are functions from A ⊂ Rm to Rn throughout this subsection, unless

stated otherwise.

Theorem 2. Let (fk) be a sequence of continuous functions. If (fk) converges uniformly to f , then f

is also continuous.

Theorem 3 (Weierstrass M -test). Suppose there is a sequence of non-negative numbers (Mk) such that

|fk(x)| ≤Mk for all x ∈ A and k = 1, 2, 3, · · · , and
∑∞
k=1Mk < +∞. Then

∑∞
k=1 fk converges uniformly

and absolutely.
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Theorem 4. Let fk : [a, b]→ R be a sequence of Riemann integrable functions, and converges uniformly

to f : [a, b]→ R on [a, b]. Then f is Riemann integrable on [a, b], and

lim
k→∞

∫ b

a

fk(x) dx =

∫ b

a

f(x) dx.

Theorem 5. Let fk : (a, b) → R be a sequence of C1 functions. Suppose (fk) converges pointwise to

f : (a, b)→ R and (f ′k) converges uniformly to g : (a, b)→ R. Then f is differentiable and f ′ = g.

1.2.2 Lebesgue Integration

Materials from this subsection entirely rely on [2]. This book will serve as an excellent introduction to

measure theory and elementary functional analysis.

Theorem 6 (Monotone Convergence Theorem). Let (fk) be a sequence of non-negative measurable

functions such that fk(x)↗ f(x) a.e. x. then

lim
n→∞

∫
fn =

∫
f.

Theorem 7 (Dominated Convergence Theorem). Let (fk) be a sequence of measurable functions such

that fk(x)→ f(x) a.e. x as k →∞. If there is an integrable function g such that |fk(x)| ≤ g(x) a.e. x

for all k, then

lim
n→∞

∫
fn =

∫
f.

Theorem 8 (Fubini’s Theorem). Suppose f(x, y) is either integrable or non-negative measurable1 on

Rn1 × Rn2 . Then ∫
Rn1

∫
Rn2

f(x, y) dydx =

∫
f =

∫
Rn2

∫
Rn1

f(x, y) dxdy.

1.3 A Brief Review on Complex Analysis

Most of this subsection is based on [1].

Theorem 9 (Cauchy Integration Theorem). Let f be a holomorphic function defined on an open set Ω,

and γ be a piecewise C1 simple closed curve which is counter-clockwise oriented such that the closure of

its interior is contained in Ω. Then for any z which lies in the interior of γ,

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ.

1This condition is formulated by Tonelli, so Fubini’s theorem restricted to this condition is often called Tonelli’s theorem.
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Chapter 2

Calculations

2.1 Method of Contour Integration

This solution adopts the method of contour integration, the standard method of calculating contour

integration.

By symmetry, we have

2I =

∫ ∞
−∞

cosαx

x2 + 1
dx =

∫ ∞
−∞

eiαx

x2 + 1
dx.

Thus it suffices to evaluate the rightmost integral. We assume α > 0 without loss of generality.

Let R > 1 and CR denote the counter-clockwised contour consisting of the line segment LR from −R
to R and the upper semicircular arc ΓR of radius R centered at the origin.

- <

6
=

ti
−R R

ΓR

LR

Then we have ∫
CR

eiαz

z2 + 1
dz =

∫ R

−R

eiαz

z2 + 1
dz +

∫
ΓR

eiαz

z2 + 1
dz =: IR + JR. (2.1)

Now Cauchy integration theorem shows that the leftmost hand side of (2.1) is equal to∫
CR

eiαz

z2 + 1
dz = 2πiRes

z=i

eiαz

z2 + 1
= πe−α.

On the other hand, IR → 2I as R → ∞. So it remains to evaluate the limit of JR. We claim that this

vanishes as R→∞, hence by (2.1),

2I =

∫ ∞
−∞

eiαx

x2 + 1
dx = πe−α.

Indeed,

|JR| ≤
∫

ΓR

∣∣∣∣ eiαzz2 + 1

∣∣∣∣ |dz| ≤ ∫
ΓR

1

R2 − 1
|dz| = πR

R2 − 1

and letting R→∞ proves the claim.
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2.2 Method using Real Analysis - I

We introduce a simple lemma:

Lemma 10. Suppose both f(x) and xf(x) are integrable on [0,∞), and g(x) is a differentiable function

such that both g(x) and g′(x) is bounded on [0,∞). Then

F (α) =

∫ ∞
0

f(x)g(αx) dx

is continuous on [0,∞), differentiable on (0,∞) and

F ′(α) =

∫ ∞
0

xf(x)g′(αx) dx.

Proof of lemma. Let M > 0 be a bound for g′(x). Then for α > 0 and 0 < |h| � α, mean value theorem

applied to
F (α+ h)− F (α)

h
=

∫ ∞
0

f(x)
g(αx+ hx)− g(αx)

h
dx

shows that the integrand is dominated by an integrable function Mxf(x), thus dominated convergence

theorem shows that we can interchange the limit as h→ 0 and the integration. This gives

lim
h→0

F (α+ h)− F (α)

h
=

∫ ∞
0

f(x)

(
lim
h→0

g(αx+ hx)− g(αx)

h

)
dx

=

∫ ∞
0

xf(x)g′(αx) dx,

proving the lemma.

Now we return to the original problem. As before, we assume α ≥ 0. By integration by parts,

I(α) =
sinαx

α

1

x2 + 1

∣∣∣∣∞
0

−
∫ ∞

0

sinαx

α

(
− 2x

(x2 + 1)2

)
dx

=
1

α

∫ ∞
0

2x sinαx

(x2 + 1)2
dx.

Then applying lemma 10 to αI(α), we have

αI ′(α) + I(α) =

∫ ∞
0

2x2 cosαx

(x2 + 1)2
dx = 2I(α)−

∫ ∞
0

2 cosαx

(x2 + 1)2
dx,

or equivalently

αI ′(α)− I(α) = −
∫ ∞

0

2 cosαx

(x2 + 1)2
dx.

Differentiating with aid of lemma 10 again,

αI ′′(α) =

∫ ∞
0

2x sinαx

(x2 + 1)2
dx = αI(α).

Therefore I ′′(α)− I(α) = 0. Then standard theory of linear differential equation shows that the general

solution has the form

I(α) = Aeα +Be−α (2.2)

for some constants A,B. So it remains to determine A and B. Since I(α) is bounded, A must vanish.

Then (2.2) reduces to

I(α) = Be−α,

showing that B = I(0) = π
2 . Therefore we have

I(α) =
π

2
e−α.
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