티스토리 뷰

MSE를 뒤적이다가 슬쩍 본 계산인데, 예뻐서 가져와봅니다.

 

We evaluate the integral

I=0101x1(1y2)x2dxdy

in two ways. Integrating with respect to x first, we get

I=01log(1/y)1y2dy=n=001y2nlog(1/y)dy=n=01(2n+1)2.

On the other hand, integraing with respect to y first,

I=01arcsinx1x2dx=[12arcsin2x]01=π28.

So we conclude that

(122)ζ(2)=n=01(2n+1)2=π28,

proving the identity ζ(2)=π26 as desired.

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함