티스토리 뷰
In this posting, we compute the reproducing kernels of the Sobolev space $H^1([0,1])$ equipped with the inner product
$$ \langle f, g \rangle = \int_{0}^{1} [ \overline{f(x)}g(x) + \overline{f'(x)}g'(x)] \,\mathrm{d}x. $$
In other words, we aim to find a function $K_a \in H^1([0, 1])$, for each $a \in [0, 1]$, such that $\langle K_a, f \rangle = f(a)$ for all $f \in H^1([0, 1])$.
Assume there exists a real-valued function $G_a \in H^2([0, 1])$ such that $G_a' = K_a$ and it solves the ODE
$$ G_a''(x) = G_a(x) - \mathbf{1}_{[a,1]}(x), \quad G_a(0) = 0, \quad G_a(1) = 1. \tag{*} $$
If this is the case, then we get
\begin{align*} & \int_{0}^{1} [f(x) K_a(x) + f'(x) K_a'(x)] \, \mathrm{d}x \\ &= \int_{0}^{1} [f(x) G_a'(x) + f'(x)(G_a(x) - \mathbf{1}_{[a,1]}(x)) ] \, \mathrm{d}x \\ &= f(1)G_a(1) - f(0)G_a(0) - f(1) + f(a) \\ &= f(a). \end{align*}
Hence $K_a = G_a'$ will be the desired reproducing kernel. The ODE $\text{(*)}$ can be solved in a fairly standard way, yielding
$$ K_a(x) = \frac{e^{-a-x}}{2 (e^2 - 1)} (e^{2 \max (a,x)} + e^2 ) (e^{2 \min (a,x)} + 1). $$
- Total
- Today
- Yesterday
- 노트
- Gamma Function
- 미쿠
- 무한급수
- 계산
- 린
- infinite summation
- 유머
- 대수기하
- 편미방
- 적분
- 오일러 상수
- 렌
- Euler constant
- 제타함수
- Euler integral
- Beta function
- Integral
- Fourier Transform
- 보컬로이드
- 이항계수
- 푸리에 변환
- Coxeter
- 수학
- 해석학
- 루카
- Zeta function
- 오일러 적분
- 감마함수
- binomial coefficient
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |