티스토리 뷰
이번 포스팅에서는 뜬금없이 해석학 한 문제 다뤄보겠습니다.
Theorem. Let $(X, d)$ be a compact metric space, and let $f:X\to X$ be a surjective $1$-Lipschitz function. Then $f$ is an isometry.
Proof. Let $f^{\circ n}$ denote the $n$-fold composition of $f$, that is, $f^{\circ 0} = \mathrm{id}_{X}$ and $f^{\circ(n+1)} = f\circ f^{\circ n}$. By the assumption, the family $(f^{\circ n})_{n=1}^{\infty}$ is $1$-Lipschitz, hence is uniformly equicontinuous. So by the Arzelà–Ascoli theorem, there is a uniformly convergent subsequence $(f^{\circ n_k})_{k=1}^{\infty}$. Let $g$ denote the corresponding subsequential limit, and let $Y=g(X)$. We claim that
- $f|_Y$ is an isometry from $Y$ to $X$, and
- $Y=X$.
Indeed, let $y_1, y_2 \in Y$, and choose $x_1, x_2 \in X$ so that $f^{\circ n_k}(x_i) \to y_i$ as $k\to\infty$ for $i = 1, 2$. Then
\begin{align*} d(f(y_1), f(y_2)) &= \lim_{k\to\infty} d(f^{\circ(1+n_k)}(x_1), f^{\circ(1+n_k)}(x_2)) \\ &\geq \lim_{k\to\infty} d(f^{\circ n_{k+1}}(x_1), f^{\circ n_{k+1}}(x_2)) \\ &= d(y_1, y_2) \end{align*}
The opposite direction is obvious, and so, $f$ restricted to $Y$ is an isometry.
For the second claim, assume otherwise that $Y \neq X$. Then there exists $\varepsilon > 0$ such that the $\varepsilon$-neighborhood $Y^{\varepsilon}$ of $Y$ is not all of $X$. However, since $f^{\circ n_k}$ converges uniformly to $g$, there exists $k$ such that $\| f^{\circ n_k} - g \|_{\sup} < \varepsilon$. Then $f^{\circ n_k}(X) \subseteq Y^{\varepsilon}$ and hence $f^{\circ n_k}$ is not surjective, contradicting the fact that $f$ is surjective. $\square$
- Total
- Today
- Yesterday
- Integral
- 적분
- Gamma Function
- 오일러 적분
- infinite summation
- 계산
- 린
- 대수기하
- 오일러 상수
- 무한급수
- 제타함수
- Euler constant
- 푸리에 변환
- 보컬로이드
- 수학
- Fourier Transform
- 미쿠
- 편미방
- Zeta function
- Coxeter
- 이항계수
- 해석학
- binomial coefficient
- 감마함수
- 노트
- Beta function
- 루카
- 유머
- Euler integral
- 렌
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |