티스토리 뷰

밤새서 푼 적분 하나. 하라는 공부는 안 하고…!

 

Proposition. The following holds:[1]

01logxlog(1x)log2(1+x)xdx=78ζ(2)ζ(3)2516ζ(5).

 

Proof. Below is my proof of the above identity.

 

Step 1. Let I be the integral in question:
I=01logxlog(1x)log2(1+x)xdx. By the simple algebraic formula (a+b)3+(ab)32a3=6ab2, it follows that
I=1601logxx{log3(1x2)+log3(1x1+x)2log3(1x)}dx(1)=1601logxlog3(1x2)xdx+1601logxlog3(1x1+x)xdx1301logxlog3(1x)xdx Applying the substitution x2x, the first integral reduces to
1601logxlog3(1x2)xdx=12401logxlog3(1x)xdx=1244βzw3(0+,1)=12ζ(5)14ζ(2)ζ(3). So (1) can be written as
(2)I=74ζ(2)ζ(3)72ζ(5)+I2, where I2 is given by
I2=1601logxlog3(1x1+x)xdx

Step 2. Now we calculate I2. Applying integrating by parts, followed by the substitution x1y1+y, we have
I2=[112log2xlog3(1x1+x)]01+1201log2xlog2(1x1+x)1x2dx=1401log2ylog2(1y1+y)ydy=01log2yy{12log2(1+y1y)}2dy=m=0n=01(2m+1)(2n+1)01y2m+2n+1log2ydy=m=0n=02(2m+1)(2n+1)(2m+2n+2)3. By the following partial fraction decomposition
1ab(a+b)3=a+bab(a+b)4=1a(a+b)4+1b(a+b)4,
together with the symmetry in the role of m and n, it follows that
I2=4m=0n=01(2n+1)(2m+2n+2)4=14m=0n=01(2n+1)(m+n+1)4=14n=0m=n+112n+11m4=14n=1m=n12n11m4=14m=1(n=1m12n1)1m4. Now by exploiting the following identity
011xk1xdx=1+12++1k011+xk2x2k2(1x)dx=1+13++12k1, we can rephrase I2 as follows:
I2=18m=11m4011+xm2x2m1xdx=180111x(ζ(4)+Li4(x)2Li4(x2))dx. Writing 11x=Li0(x)x and applying the simple differentiation rule ddxLis(xp)=pLis1(xp)x, by applying integrating parts 3 times,
I2=18[Li1(x)(ζ(4)+Li4(x)2Li4(x2))]011801Li1(x)x(Li3(x)4Li3(x2))dx=18[Li2(x)(Li3(x)4Li3(x2))]01+1801Li2(x)x(Li2(x)8Li2(x2))dx=38ζ(2)ζ(3)+18[Li3(x)(Li2(x)8Li2(x2))]011801Li3(x)x(Li1(x)16Li1(x2))dx=12ζ(2)ζ(3)+1801Li3(x)x(log(1x)16log(1x2))dx=12ζ(2)ζ(3)+1801Li3(x)log(1x)xdx201Li3(x)log(1x2)xdx. Now applying the substitution xx2 to the first integral, from the identity Li3(x2)=4Li3(x)+4Li3(x) it follows that
1801Li3(x)log(1x)xdx=1401Li3(x2)log(1x2)xdx=01{Li3(x)+Li3(x)}log(1x2)xdx. This finally gives
I2=12ζ(2)ζ(3)11Li3(x)log(1x2)xdx. Plugging this back to (2), we obtain
(3)I1=54ζ(2)ζ(3)72ζ(5)+I3, where I3 is given by
I3=11Li3(x)log(1x2)xdx.

Step 3. Finally, we evaluate I3 into a closed form and thus complete the calculation. Since the integrand is holomorphic on the unit disc, we can shift up the contour of integration to the clockwise semicircular arc:
I3=iπ0Li3(eiθ)log(1e2iθ)dθ=1i0πLi3(eiθ)log(1e2iθ)dθ Now expanding with Taylor series and taking advantage of the fact that I3 is real, we have
I3=n=1m=11n31m0π{cos(nθ)sin(2mθ)+sin(nθ)cos(2mθ)}dθ=n=1m=11n31m0πcos(nθ)sin(2mθ)dθ+n=1m=11n31m0πsin(nθ)cos(2mθ)dθ=:S1+S2. To evaluate S1, we note the following simple identity
0πcos(nθ)sin(2mθ)dθ=1+(1)n120πcos(12nθ)sin(mθ)dθ. Then we can write
S1=n=01(2n+1)30π{m=1sin(mθ)m}cos((n+12)θ)dθ,S2=m=11m0π{n=1sin(nθ)n3}cos(2mθ)dθ. But it is not hard to check that the following Fourier expansion holds:
n=1sinnθn=n=1eiθn=log(1eiθ)=πθ2,0<θ<π, n=1sinnθn3=θ312πθ24+π2θ6,0<θ<π. Plugging these to S1, S2 and performing some tedious calculation, we obtain
S1=n=02(2n+1)5=3116ζ(5)andS2=π216m=11m3=38ζ(2)ζ(3). Therefore we have
I=78ζ(2)ζ(3)2516ζ(5).

풀이는 아래 참고문헌 [1]에 있습니다. 참고로 이 적분의 값은 실험적으로 발견되었다고 하네요. 그럼 제가 처음 푼 건가… 라고 말하기에는, 꼴이 뭔가 그럴듯하니 이미 누군가 풀어놨겠죠 -.-;;

References

  1. Shobhit, A crazy integral - Integrals and Series

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함