티스토리 뷰

수업을 듣다가, 꽤나 흥미로운 사실인 것 같아서 그냥 정리해둡니다.

 

Proposition. Define elementary symmetric polynomials of n variables Λ={λ1,,λn} by
c0=1,ck=XΛ|X|=kλXλ(1kn)
and similarly we define
sk=j=1nλjk(k0).
Then the set of values {c0,c1,,cn} completely determines {s0,s1,,sn} and vice versa.

 

Proof. For simplicity, let ck=0 for k>n. It is easy to confirm that (1tλ1)(1tλn)=k=0(1)kcktk. Similarly, we have 11tλ1++11tλn=k=0sktk. Now let f(x)=(xtλ1)(xtλn)=k=0(1)kcktkxnk. On the one hand, considering the log-derivative of f(x), it is easy to confirm that f(1)=(1tλ1)(1tλn)(11tλ1++11tλn)=k=0(j=0k(1)jcjskj)tk. On the other hand, f(1)=k=0(1)k(nk)cktk. Thus it follows that for any k we have j=0k(1)jcjskj=(1)k(nk)ck. Thus if (ck) are given, this forms a linear system of n equations for n variables (sk) whose corresponding matrix is triangular with non-zero scalar diagonals. Thus we can solve this in terms of (sk) and vice versa. This completes the proof.

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함