티스토리 뷰
Here we want to calculate an integral related to our earlier calculation.
1st Proof. Note that
$$ \frac{1}{1-x} + \frac{1}{\log x} = \int_{0}^{1} \frac{1 - x^{t}}{1-x} \, dt. $$Then by Tonelli's theorem, we have
\begin{align*} \int_{0}^{1} \left( \frac{1}{\log x} + \frac{1}{1-x} \right)^2 \, dx &= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(1 - x^{s})(1 - x^{t})}{(1-x)^2} \, dsdtdx \\ &= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(1 - x^{s})(1 - x^{t})}{(1-x)^2} \, dxdsdt. \end{align*}Expanding the integrand into series and applying Tonelli's theorem again,
\begin{align*} &= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sum_{n=1}^{\infty} n x^{n-1} (1 - x^{s})(1 - x^{t}) \, dxdsdt \\ &= \int_{0}^{1} \int_{0}^{1} \sum_{n=1}^{\infty} n \left( \frac{1}{n} - \frac{1}{n+s} - \frac{1}{n+t} + \frac{1}{n+s+t} \right) \, dsdt \\ &= \sum_{n=1}^{\infty} \Bigg( 1 + n(n+2) \log(n+2) - 2n(n+2)\log(n+1) + n(n+2) \log n \Bigg) \\ &= \lim_{N\to\infty} \sum_{n=1}^{N} \Bigg( 1 + n(n+2) \log(n+2) - 2n(n+2)\log(n+1) + n(n+2) \log n \Bigg). \end{align*}Simplifying the inner summation, we have
\begin{align*} & \sum_{n=1}^{N} \Bigg( 1 + n(n+2) \log(n+2) - 2n(n+2)\log(n+1) + n(n+2) \log n \Bigg) \\ &= N + \sum_{n=3}^{N+2} (n^2-2n) \log n - \sum_{n=2}^{N+1} (2n^2 - 2) \log n + \sum_{n=1}^{N} (n^2+2n) \log n \\ &= N + (N^2 + 2N) \log(N+2) - (N^2+4N+1)\log(N+1) \\ &\quad + \sum_{n=1}^{N} (n^2-2n) \log n - \sum_{n=1}^{N} (2n^2 - 2) \log n + \sum_{n=1}^{N} (n^2+2n) \log n \\ &= N + (N^2 + 2N) \log \left( \frac{N+2}{N+1} \right) - (2N+1)\log(N+1) + 2 \log (N!) \\ &= 2N - (2N+1)\log N - \frac{3}{2} + 2 \log (N!) + O\left(N^{-1}\right). \end{align*}Now it follows from the Stirling's formula that this is equivalent to $\log (2\pi)- \frac{3}{2}$, completing the proof.
2nd Proof.Let $I$ denote the integral. By the substitution $x = e^{-t}$, we have
\begin{align*} I &= \int_{0}^{\infty} \left\{ \frac{1}{(1-e^{-t})^{2}} - \frac{2}{t(1-e^{-t})} + \frac{1}{t^2} \right\} e^{-t} \, dt \\ &= \int_{0}^{\infty} \left\{ \frac{e^{t}}{(e^{t} - 1)^{2}} - \frac{1}{t^2} \right\} \, dt + \int_{0}^{\infty} \left\{ \frac{1 + e^{-t}}{t^2} - \frac{2}{t(e^{t}-1)} \right\} \, dt. \end{align*}It is easy to observe that the first integral is
\begin{align*} \int_{0}^{\infty} \left\{ \frac{e^{t}}{(e^{t} - 1)^{2}} - \frac{1}{t^2} \right\} \, dt &= \left[ \frac{1}{t} - \frac{1}{e^{t} - 1} \right]_{0}^{\infty} = -\frac{1}{2}. \end{align*}We thus focus on the second integral. Associated to it, we introduce
$$ F(s) = \int_{0}^{\infty} \left\{ \frac{1 + e^{-t}}{t^2} - \frac{2}{t(e^{t}-1)} \right\} e^{-st} \, dt. $$By the twice differentiation, we have
\begin{align*}F''(s) &= \int_{0}^{\infty} \left\{ 1 + e^{-t} - \frac{2t}{(e^{t}-1)} \right\} e^{-st} \, dt \\ &= \frac{1}{s} + \frac{1}{s+1} - 2\sum_{n=1}^{\infty} \frac{1}{(n+s)^2} \\ &= \frac{1}{s} + \frac{1}{s+1} - 2\psi_{1}(s+1). \end{align*}Integrating and using the condition $F'(+\infty) = 0$, we have
$$ F'(s) = \log s + \log(s+1) - 2\psi_{0}(s+1). $$Here we used the estimate $\psi_{0}(s) \sim \log s$ as $s \to \infty$. Integrating again, we have
$$ F(s) = s \log s + (s+1)\log(s+1) - 2s - 1 - 2\log\Gamma(s+1) + C. $$To determine the constant $C$, we rearrange the terms as
$$ F(s) = \left\{ (s+1)\log\left(\frac{s+1}{s}\right) - 1 \right\} + 2\left\{ \left(s+\frac{1}{2}\right)\log s - s - \log\Gamma(s+1) \right\} + C. $$Then by the Stirling's formula, we have
$$ 0 = F(+\infty) = -\log(2\pi) + C $$and thus $C = \log (2\pi)$. Therefore
$$I = -\frac{1}{2} + F(0) = \log(2\pi) - \frac{3}{2}$$as desired.
Remark. We remark that the first proof and the second proof corresponds to ordinary summation and Abel summation, respectively. Also, a technique similar to the first proof shows that
\begin{align*} & \int_{0}^{\infty} \left( \frac{1}{\log x} + \frac{1}{1-x} \right)^3 \, dx \\ &= \sum_{n=1}^{\infty} \Bigg[ \frac{n+1}{2} + \left(\frac{n^4}{4}+\frac{7 n^3}{4}+3 n^2+\frac{3 n}{2}\right) \log n \\ &\qquad \qquad -\left(\frac{3 n^4}{4}+\frac{21n^3}{4}+\frac{39 n^2}{4}+\frac{21 n}{4}\right) \log (n+1) \\ &\qquad \qquad +\left(\frac{3 n^4}{4}+\frac{21 n^3}{4}+\frac{21 n^2}{2}+6n\right) \log (n+2) \\ &\qquad \qquad -\left(\frac{n^4}{4}+\frac{7 n^3}{4}+\frac{15 n^2}{4}+\frac{9 n}{4}\right) \log(n+3) \Bigg] \\ &= \lim_{N\to\infty} \Bigg[ -\frac{31}{24} + \frac{3 N^2}{2}-\frac{6 N^2+6N+1}{2} \log N + 6 \sum_{n=1}^{N} n \log n \Bigg] \\ &= -\frac{31}{24} + 6 \log A, \end{align*}where $A$ stands for the Glaisher-Kinkelin constant.
- Total
- Today
- Yesterday
- 보컬로이드
- 푸리에 변환
- 유머
- 루카
- 수학
- Euler integral
- 편미방
- Coxeter
- Gamma Function
- binomial coefficient
- 이항계수
- Integral
- Fourier Transform
- Zeta function
- 감마함수
- infinite summation
- 적분
- 계산
- 대수기하
- 오일러 적분
- 제타함수
- 미쿠
- Euler constant
- 린
- 오일러 상수
- 노트
- 렌
- 해석학
- Beta function
- 무한급수
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |