티스토리 뷰
이전에 비슷한 적분을 실해석적으로 푼 적이 있는데, 이번에는 깔끔하게 복소로 계산해보았습니다. 제 복소적분 실력도 못 써먹을 수준은 아니군요.
Problem.
Prove that[1]
$$ \int_0^{\pi/2} \frac{\log(\cos x)}{x^2+\log^2(\cos x)} \, dx = \frac{\pi}{2}\left(1-\frac{1}{\log 2}\right) $$
Proof. Note that for $|x| < \frac{\pi}{2}$, we have
$$ \frac{\log\cos x}{\log^2 \cos x + x^2} = \Re \frac{1}{\log\left( \frac{1+e^{2ix}}{2} \right)}. $$Thus if $I$ denotes the given integral, we have
\begin{align*} I &= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Re \frac{1}{\log\left( \frac{1+e^{2ix}}{2} \right)} \, dx = \frac{1}{4} \int_{-\pi}^{\pi} \Re \frac{1}{\log\left( \frac{1+e^{ix}}{2} \right)} \, dx \\ &= \frac{1}{4} \mathrm{PV}\int_{-\pi}^{\pi} \Re \frac{1}{\log\left( \frac{1+e^{ix}}{2} \right)} \, dx = \frac{1}{4} \Re \mathrm{PV}\int_{-\pi}^{\pi} \frac{1}{\log\left( \frac{1+e^{ix}}{2} \right)} \, dx. \end{align*}Now let $C_{\epsilon}$ be the counter-clockwised contour consisting of the circle of radius 1 centered at the origin, with two semicircular indents $\gamma_{1,\epsilon}$ around $1$ and $\gamma_{2,\epsilon}$ around $-1$ as follows:
By writing
\begin{align*} I = \frac{1}{4} \Re \lim_{\delta\to0^{+}}\left( \int_{-\pi+\delta}^{-\delta} + \int_{\delta}^{\pi-\delta} \right) \frac{1}{\log\left( \frac{1+e^{ix}}{2} \right)} \, dx \end{align*}and plugging the substitution $z = e^{ix}$, we observe that
\begin{align*} I = \frac{1}{4} \Im \lim_{\epsilon\to 0^{+}}\left(\oint_{C_{\epsilon}} - \int_{\gamma_{1,\epsilon}} - \int_{\gamma_{2,\epsilon}} \right) \frac{dz}{z \log\left(\frac{1+z}{2}\right)} \end{align*}Let
\begin{align*} f(z) = \frac{1}{z \log\left(\frac{1+z}{2}\right)}. \end{align*}It is plain from the logarithmic singularity that
\begin{align*} \lim_{\epsilon \to 0^{+}} \int_{\gamma_{2,\epsilon}} f(z) \, dz = 0. \end{align*}Also it follows that
\begin{align*} \lim_{\epsilon\to 0^{+}} \oint_{C_{\epsilon}} f(z) \, dz &= 2\pi i \operatorname{Res}_{z=0} f(z) = -\frac{2\pi i}{\log 2}, \\ \lim_{\epsilon\to 0^{+}} \int_{\gamma_{1,\epsilon}} f(z) \, dz &= -\pi i \operatorname{Res}_{z=1} f(z) = -2\pi i. \end{align*}Therefore we have
\begin{align*} I &= \frac{1}{4} \Im \left( 2\pi i - \frac{2\pi i}{\log 2} \right) = \frac{\pi}{2} \left( 1 - \frac{1}{\log 2} \right). \end{align*}References
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- 린
- 오일러 적분
- 유머
- 대수기하
- 계산
- 렌
- 수학
- 노트
- Coxeter
- binomial coefficient
- 푸리에 변환
- Euler constant
- Euler integral
- infinite summation
- 해석학
- 오일러 상수
- 미쿠
- 감마함수
- Gamma Function
- 이항계수
- 보컬로이드
- Beta function
- Fourier Transform
- Integral
- 무한급수
- Zeta function
- 편미방
- 제타함수
- 루카
- 적분
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함