티스토리 뷰
Recently I was astonished by the following problem.
Question.Let $f$ be a continuous function such that
\begin{equation}\label{eqn:cond}
\int_{-\infty}^{\infty} x^n f(x) \; dx = 0
\end{equation}
for all $n = 0, 1, 2, \cdots$. Then is $f = 0$ everywhere?
Answer.
It might seem at the first glance that this is true. Surprisingly, however, this is not true. Let
$$ g(x) = \exp\left(-x^2-\frac{1}{x^2}\right). $$
Clearly $g(x)$ is of Schwartz class. Since the Fourier transform is a linear isomorphism on Schwartz space, its inverse Fourier transform
$$ f(x) := \mathcal{F}^{-1}g(x) $$
is also of Schwartz class. In particular, the LHS of \eqref{eqn:cond} is defined for every $n$. Therefore, we have
$$ \int_{-\infty}^{\infty} x^n f(x) \; dx
= \left. \frac{1}{(-2\pi i)^n} \frac{d^n}{dw^n} \int_{-\infty}^{\infty} f(x) e^{-2\pi i w x} \; dx \right|_{w=0}
= \frac{1}{(-2\pi i)^n} g^{(n)}(0)
= 0 $$
and the equation \eqref{eqn:cond} is satisfied. Since $f \neq 0$, we have found a non-trivial counter-example.
In fact, after a success on a class of functions with much stronger condition
$$ \forall s, \ f(x)e^{s|x|} \in L^1(\mathbb{R}), $$I tried for a generalized case, which of course included the case of Schwartz space. But now it turned out that this was just too-good-to-be-true.
References
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- 이항계수
- 미쿠
- 푸리에 변환
- 오일러 적분
- 루카
- Coxeter
- Integral
- binomial coefficient
- Euler integral
- 제타함수
- 감마함수
- 계산
- 오일러 상수
- 무한급수
- Gamma Function
- 편미방
- 해석학
- 수학
- infinite summation
- Euler constant
- 보컬로이드
- 린
- 노트
- 적분
- 대수기하
- Fourier Transform
- 렌
- Beta function
- Zeta function
- 유머
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함