티스토리 뷰
Problem 1.
Evaluate the following integral.[1]
\begin{equation}\label{prob:wts}
\int_{0}^{\infty} \frac{u \log(a^2+u^2)}{e^{2\pi u} - 1} \; du
\end{equation}
Proof.
Let $I(a)$ denote the given integral. Then we have
\begin{align*}I(0)
& = 2 \int_{0}^{\infty} \frac{u \log u}{e^{2\pi u} - 1} \; du \\
& = \frac{1}{2\pi^2} \int_{0}^{\infty} \frac{x (\log x - \log (2\pi))}{e^{x} - 1} \; dx \qquad (x = 2\pi u) \\
& = \frac{1}{2\pi^2} \left( \left. \frac{d}{ds}\zeta(s)\Gamma(s) \right|_{s=2} - \zeta(2) \log (2\pi) \right) \\
& = \frac{1}{2\pi^2} \left(\zeta'(2) + \zeta(2)\psi_0(2) - \zeta(2) \log (2\pi) \right).
\end{align*}
This can be simplified further. Using functional identity of the zeta function, we can show that
$$ 12 \zeta(2) \zeta'(-1) = \zeta'(2) + \zeta(2) \psi_0(2) - \zeta(2) \log(2\pi). $$
Thus we have
$$I(0) = \zeta'(-1). $$
Also,
$$\begin{align*}
I'(a)
&= \int_{0}^{\infty} \frac{2au}{u^2+a^2} \frac{du}{e^{2\pi u}-1} \\
&= 2a \int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-2\pi nu} \left(\int_{0}^{\infty} \sin(ux)e^{-ax}\;dx\right)\;du \\
&= 2a \int_{0}^{\infty} \sum_{n=1}^{\infty} \left(\int_{0}^{\infty} \sin(xu)e^{-2\pi nu}\;du\right)e^{-ax}\;dx \\
&= a \int_{0}^{\infty} \left(\sum_{n=1}^{\infty} \frac{2x}{x^2+4\pi^2 n^2}\right)e^{-ax}\;dx \\
&= a \int_{0}^{\infty} \left(\frac{1}{2}\coth\left(\frac{x}{2}\right) - \frac{1}{x}\right)e^{-ax}\;dx
\end{align*}$$
Proceeding,
\begin{align*}I'(a)
&= a \left[ \left(\log\sinh\left(\frac{x}{2}\right)-\log x \right)e^{-ax} \right]_{0}^{\infty} + a^2 \int_{0}^{\infty} \left(\log\sinh\left(\frac{x}{2}\right)-\log x \right)e^{-ax} \; dx \\
&= a\log 2 + a^2 \int_{0}^{\infty} \left(\frac{x}{2} + \log\left(1 - e^{-x}\right)-\log2 + \log a -\log ax \right)e^{-ax} \; dx \\
&= \frac{1}{2} + a(\gamma + \log a) + a^2 \int_{0}^{\infty} e^{-ax} \log\left(1 - e^{-x}\right) \; dx \\
&= \frac{1}{2} + a(\gamma + \log a) - a^2 \int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n} e^{-(a+n)x} \; dx \\
&= \frac{1}{2} + a(\gamma + \log a) - a \sum_{n=1}^{\infty} \frac{a}{n(n+a)} \\
&= \frac{1}{2} + a(\gamma + \log a) - a (\gamma + \psi_0 (a+1) ) \\
&= \frac{1}{2} + a\left( \log a - \psi_0 (a+1) \right).
\end{align*}
Thus integrating, we have the following result for \eqref{prob:wts}.
$$\begin{align*}
I(a)
&= I(0) + \int_{0}^{a} I'(t) \; dt \\
&= \zeta'(-1) + \frac{a}{2} + \int_{0}^{a} t \left( \log t - \psi_0 (t+1) \right) \; dt \\
&= \zeta'(-1) + \frac{a}{2} - \frac{a^2}{4} + \frac{a^2}{2}\log a - \int_{0}^{a} t \psi_0 (t+1) \; dt \\
&= \zeta'(-1) + \frac{a}{2}\left(1 - \frac{a}{2}\right) + \frac{a^2}{2}\log a - a \log\Gamma(a+1) + \int_{0}^{a} \log\Gamma(t+1) \; dt.
\end{align*}$$
Almost same argument proves the following identity.
Problem 2.
Show the following identity.[2]
\begin{equation}\label{prob2:wts}
\int_{0}^{1} \frac{\log(1-x)}{x} \frac{2z}{\log^{2}x+(2\pi z)^{2}} \; dx = -\log\left(\frac{z!\, e^{z}}{z^{z}\sqrt{2\pi z}}\right).
\end{equation}
Proof.
Using the substitution $x = e^{-2\pi u}$, we have
\begin{align*}
\int_{0}^{1}\frac{\log(1-x)}{x}\frac{2z}{\log^{2}x+(2\pi z)^{2}}\; dx
&=\frac{1}{\pi}\int_{0}^{\infty}\frac{z}{u^{2}+z^{2}}\log(1-e^{-2\pi u})\; du \\
&=-\frac{1}{\pi}\int_{0}^{\infty}\sum_{n=1}^{\infty}\frac{e^{-2\pi n u}}{n}\int_{0}^{\infty}\cos (ut) e^{-zt}\; dt du\\
&=-\frac{1}{\pi}\int_{0}^{\infty}e^{-zt}\sum_{n=1}^{\infty}\frac{1}{n}\int_{0}^{\infty}\cos (tu) e^{-2\pi n u}\; du dt\\
&=-\int_{0}^{\infty}\frac{e^{-zt}}{t}\left(\sum_{n=1}^{\infty}\frac{2t}{t^{2}+(2\pi n)^{2}}\right) dt\;\\
&=-\int_{0}^{\infty}\frac{e^{-zt}}{t}\left(\frac{1}{2}\coth\left(\frac{t}{2}\right)-\frac{1}{t}\right)\; dt.
\end{align*}
Now let $I(z)$ denote this integral. Then
\begin{align*}
I'(z)
&= \int_{0}^{\infty} \left( \frac{1}{2}\coth\left(\frac{t}{2}\right) - \frac{1}{t} \right) e^{-zt} \; dt \\
&= \left[ \left( \log \sinh\left(\frac{t}{2}\right) - \log t + \log 2 \right) e^{-zt} \right]_{0}^{\infty} \\
&\quad + z \int_{0}^{\infty} \left( \log \sinh\left(\frac{t}{2}\right) - \log t + \log 2 \right) e^{-zt} \; dt \\
&= z \int_{0}^{\infty} \left( \frac{t}{2} - \log t + \log \left(1 - e^{-t}\right) \right) e^{-zt} \; dt \\
&= \frac{1}{2z} + \gamma + \log z + z \int_{0}^{\infty} e^{-zt} \log \left(1 - e^{-t}\right) \; dt \\
&= \frac{1}{2z} + \gamma + \log z - z \int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{e^{-(z+n)t}}{n} \; dt \\
&= \frac{1}{2z} + \gamma + \log z - z \sum_{n=1}^{\infty} \frac{1}{n(n+z)} \\
&= \frac{1}{2z} + \log z - \psi_0 (z+1).
\end{align*}
Therefore, we have
\begin{align*}
I(z)
&=-\int_{z}^{\infty} I'(w) \; dw \\
&=-\left[ \frac{1}{2}\log w + w \log w - w - \log(w!) \right]_{z}^{\infty} \\
&= \log\sqrt{2\pi} + \frac{1}{2}\log z + z \log z - z - \log (z!) \\
&= -\log \left( \frac{z! e^z}{z^z \sqrt{2\pi z}} \right).
\end{align*}
References
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- 이항계수
- Beta function
- 제타함수
- 린
- Integral
- 오일러 적분
- 계산
- Euler constant
- 편미방
- binomial coefficient
- 오일러 상수
- 무한급수
- 대수기하
- Euler integral
- Fourier Transform
- 수학
- 루카
- 푸리에 변환
- 미쿠
- 적분
- 노트
- 유머
- 감마함수
- Gamma Function
- 보컬로이드
- Zeta function
- Coxeter
- 렌
- 해석학
- infinite summation
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함