티스토리 뷰
Problem.
Find the limit
\begin{equation}\label{prob:lim}
\lim_{n\to\infty} \frac{1}{n^{3/2}} \int_{-\infty}^{\infty} \frac{1 - \prod_{k=1}^{n} \cos (kx)}{x^2} \; dx.
\end{equation}
To find the value of \eqref{prob:lim}, we need some preliminaries.
Lemma 1.
For any $\alpha \in \mathbb{R}$, we have
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1 - \cos (\alpha x)}{x^2} \; dx = \pi |\alpha|.
\end{equation*}
Proof.
This is an immediate consequence of the Dirichlet integral.
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1-\cos ax}{x^2} \; dx
= \left[ -\frac{1-\cos ax}{x}\right]_{-\infty}^{\infty} + a \int_{-\infty}^{\infty} \frac{\sin ax}{x} \; dx
= \pi |a|.
\end{equation*}
Lemma 2.
For any $n \in \mathbb{N}$ and $\theta_1, \cdots, \theta_n$, we have
\begin{equation*}
\prod_{k=1}^{n} \cos \theta_k = \frac{1}{2^n} \sum_{\epsilon \in S} \cos\left( \epsilon_1 \theta_1 + \cdots + \epsilon_n \theta_n \right),
\end{equation*}
where $S = \{ -1, 1\}^{n}$.
Proof.
This follows from the repeated application of the famous trigonometric formula
\begin{equation*}
2 \cos A \cos B = \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right).
\end{equation*}
Although it is possible to calculate \eqref{prob:lim} by brutal force[1] of analysis, we are going to utilize the following famous version of the central limit theorem(CNT) in probability theory.
Theorem 3. (Lyapunov CNT)[2]
Let $\{ X_i \}$ be a sequence of independent random variables, each having a finite expected value $\mu_i$ and variance $\sigma_i^2$. Define $s_n^2 = \sigma_1^2 + \cdots + \sigma_n^2$. If for some $\delta > 0$, the Lyapunov’s condition
\begin{equation}\label{thm3:lyap_cond}
\lim_{n\to\infty} \frac{1}{s_n^{2+\delta}} \sum_{k=1}^{n} \mathbb{E}[|X_i - \mu_i|^{2+\delta}] = 0
\end{equation}
is satisfied, then
\begin{equation*}
\frac{1}{s_n}\sum_{k=1}^{n} (X_k - \mu_k) \xrightarrow[ ]{d} N(0, 1)
\end{equation*}
as $n \to \infty$.
Then the solution goes as follows:
Solution of the Problem.
Let $I_n$ be
\begin{equation*}
I_n := \int_{-\infty}^{\infty} \frac{1 - \prod_{k=1}^{n} \cos (kx)}{x^2} \; dx,
\end{equation*}
and $S$ be as in Lemma 2. By Lemma 1 and 2, we have
\begin{align*}
I_n &= \frac{1}{2^n} \sum_{\epsilon \in S} \int_{-\infty}^{\infty} \frac{1-\cos(\epsilon_1 x + \cdots + n \epsilon_n x)}{x^2} \; dx \\
&= \frac{\pi}{2^n} \sum_{\epsilon \in S} \left|\epsilon_1 + \cdots + n \epsilon_n\right|.
\end{align*}
Consider $(X_k) = (k \epsilon_k)$ as a sequence of independent random variables satisfying
\begin{equation*}
\mathbb{P}(X_k = k) = \mathbb{P}(X_k = -k) = \frac{1}{2}.
\end{equation*}
Then the previous identity is rewritten, in probability language, as
\begin{equation*}
I_n = \pi \, \mathbb{E}\left| X_1 + \cdots + X_n \right|.
\end{equation*}
Since
\begin{equation*}
s_n^2 := \mathbb{V}(X_1) + \cdots + \mathbb{V}(X_n) = 1^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6},
\end{equation*}
the limit \eqref{prob:lim} is equivalent to
\begin{equation*}
\frac{\pi}{\sqrt{3}} \lim_{n\to\infty} \frac{1}{s_n} \, \mathbb{E}\left| X_1 + \cdots + X_n \right|.
\end{equation*}
Now, it is easy to verify that the Lyapunov's condition \eqref{thm3:lyap_cond} is satisfied for every $\delta > 0$. Thus by Theorem 3, we obtain the convergence in distribution
\begin{equation*}
\frac{X_1 + \cdots + X_n}{s_n} \xrightarrow[ ]{d} N(0, 1).
\end{equation*}
In particular, if $Z \sim N(0, 1)$, then
\begin{equation*}
\lim_{n\to\infty} \frac{1}{s_n} \, \mathbb{E}\left| X_1 + \cdots + X_n \right| = \mathbb{E}|Z| = \sqrt{\frac{2}{\pi}}.
\end{equation*}
Therefore we obtain
\begin{equation*}
\lim_{n\to\infty} \frac{1}{n^{3/2}} \int_{-\infty}^{\infty} \frac{1 - \prod_{k=1}^{n} \cos (kx)}{x^2} \; dx
= \frac{\pi}{\sqrt{3}} \lim_{n\to\infty} \frac{1}{s_n} \, \mathbb{E}\left| X_1 + \cdots + X_n \right|
= \sqrt{\frac{2 \pi}{3}}.
\end{equation*}
References
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- 적분
- 계산
- 푸리에 변환
- 제타함수
- 렌
- 수학
- Fourier Transform
- infinite summation
- 미쿠
- Gamma Function
- 오일러 상수
- 대수기하
- 감마함수
- Coxeter
- 무한급수
- 편미방
- Euler constant
- 루카
- 노트
- 이항계수
- Zeta function
- Integral
- 보컬로이드
- binomial coefficient
- 오일러 적분
- 유머
- Euler integral
- Beta function
- 린
- 해석학
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함