티스토리 뷰
Today's integral is not hard to solve, but I think it is worth it relish the symmetry innate in it.
Problem.
Prove that for $0 < a < b$,
\begin{equation}
\int_{a}^{b} \arccos \left( \frac{x}{\sqrt{(a+b)x - ab}} \right) \; dx = \frac{\pi}{4} \frac{(b-a)^2}{a+b}.
\label{eqn:orig}
\end{equation}
Solution.
Let \( \alpha = \sqrt{b/a} > 1 \) and \( \beta = \frac{1}{2}(\alpha - \alpha^{-1}) \). Then by the substitution \( x = \sqrt{ab} u \), \eqref{eqn:orig} is equivalent to
\begin{equation}
\int_{\alpha^{-1}}^{\alpha} \arccos \left( \frac{u}{\sqrt{(\alpha + \alpha^{-1}) u - 1}} \right) \; du = \frac{\pi \beta^2}{\alpha + \alpha^{-1}}.
\label{eqn:var_1}
\end{equation}
Now by the substitution \( v = \sqrt{(\alpha + \alpha^{-1}) u - 1} \), \eqref{eqn:var_1} is equivalent to
\begin{equation}
\int_{\alpha^{-1}}^{\alpha} 2 v \arccos \left( \frac{v + v^{-1}}{\alpha + \alpha^{-1}} \right) \; dv = \pi \beta^2 .
\label{eqn:var_2}
\end{equation}
Now performing integration by parts, the left hand side of \eqref{eqn:var_2} becomes
\begin{equation}
\int_{\alpha^{-1}}^{\alpha} \frac{v^2 - 1}{\sqrt{(\alpha + \alpha^{-1})^2 - (v + v^{-1})^2}} \; dv = \int_{\alpha^{-1}}^{\alpha} \frac{v^2 - 1}{\sqrt{(\alpha - \alpha^{-1})^2 - (v - v^{-1})^2}} \; dv .
\label{eqn:var_3}
\end{equation}
Finally, plug \( v = w + \sqrt{1+w^2} \). Then \eqref{eqn:var_3} reduces to
\begin{equation}
\int_{-\beta}^{\beta} \frac{w\left(w+\sqrt{1+w^2}\right)^2}{\sqrt{\beta^2 - w^2}\sqrt{1+w^2}} \; dw .
\label{eqn:var_4}
\end{equation}
Now expanding the square in the numerator of \eqref{eqn:var_4}, the odd terms cancel out, yielding
\begin{equation*}
\int_{-\beta}^{\beta} \frac{2w^2}{\sqrt{\beta^2 - w^2}} \; dw .
\end{equation*}
This integral is easily calculated by the substitution \( w = \beta \sin\theta \), verifying the identity as desired.
References
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- Zeta function
- Euler integral
- 오일러 상수
- 적분
- 수학
- 무한급수
- 오일러 적분
- 루카
- 대수기하
- 해석학
- 린
- infinite summation
- Euler constant
- 노트
- binomial coefficient
- Coxeter
- 이항계수
- 계산
- 유머
- 제타함수
- Beta function
- 푸리에 변환
- 렌
- 보컬로이드
- Integral
- 편미방
- 감마함수
- Gamma Function
- 미쿠
- Fourier Transform
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함