티스토리 뷰
오늘의 계산 시리즈로 여러분들을 다시 찾아뵙는 것은 정말 오랜만이네요. 거의 반 년 가까이 계산을 놓고 있었는데, 오늘 좋은 떡밥을 하나 줏어서 열심히 머리굴린 덕에 계산해낼 수 있었습니다. 한 3시간 정도 매달린 것 같네요. 아, 어지러워... 진리의 미쿠로 다시 회복하고 확률미방이나 공부해야겠네요.
Problem. Find the value of the integral
\begin{equation*} \int_{0}^{1} \frac{\log \log (1/x)}{1+x^2} \; dx. \end{equation*}
Solution.
By the substitution \( x = e^{-t} \), we find that
\begin{align*}
\int_{0}^{1} \frac{(\log (1/x))^s}{1+x^2} \; dx
&= \int_{0}^{\infty} \frac{t^s e^{-t}}{1 + e^{-2t}} \; dt \\
&= \int_{0}^{\infty} \sum_{n=0}^{\infty} (-1)^n t^s e^{-(2n+1)t} \; dt \\
&= \sum_{n=0}^{\infty} (-1)^n \, \frac{\Gamma(s+1)}{(2n+1)^{s+1}} \\
&= \Gamma(s+1)L(s+1, \chi_4),
\end{align*}
where \( L(s, \chi_4) \) is the Dirichlet L-function of the unique non-principal character \( \chi_4 \) to the modulus 4. Often it is denoted as \( \beta(s) \) and called the Dirichlet beta function. Thus differentiating with respect to \( s \) and plugging \( s = 0 \), we obtain
\begin{equation}\int_{0}^{1} \frac{\log \log (1/x)}{1+x^2} \; dx = \psi_0(1) \beta(1) + \beta'(1), \label{eqn:int_1} \end{equation}
and the problem reduces to find the value of \( \beta(1) \) and \( \beta'(1) \). Note that \( \beta(1) = \frac{\pi}{4} \) is just the Gregory series. For \( \beta'(1) \), we first notice that the following functional equation holds.
\begin{equation} \beta(s)=\left(\frac{\pi}{2}\right)^{s-1} \Gamma(1-s) \cos \left( \frac{\pi s}{2} \right)\,\beta(1-s). \label{eqn:func_eqn} \end{equation}
This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate \( \beta'(0) \). For \( 0 < s \), we have
\begin{align*}
-\beta'(s)
&= \sum_{n=1}^{\infty} \left[ \frac{\log(4n+1)}{(4n+1)^s} - \frac{\log(4n-1)}{(4n-1)^s} \right] \\
&= \sum_{n=1}^{\infty} \frac{1}{(4n)^s} \left[ \log \left( \frac{4n+1}{4n-1} \right) - \frac{1}{2n} \right] + 2^{-2s-1}\zeta(s+1) \\
& \qquad + \sum_{n=1}^{\infty} \left( \frac{1}{(4n+1)^s} - \frac{1}{(4n)^s} \right) \log (4n+1) \\
& \qquad + \sum_{n=1}^{\infty} \left( \frac{1}{(4n)^s} - \frac{1}{(4n-1)^s} \right) \log (4n-1) \\
& =: A(s) + 2^{-2s-1}\zeta(s+1) + B(s) + C(s).
\end{align*}
We first estimate \( B(s) \). As \( n \to \infty \), we have
\begin{equation*} \log \left( \frac{4n}{4n+1} \right) = -\frac{1}{4n} + O\left( \frac{1}{n^2} \right), \quad \log \left( \frac{4n}{4n-1} \right) = \frac{1}{4n} + O\left( \frac{1}{n^2} \right). \end{equation*}
Thus when \( s \to 0 \),
\begin{align*}
B(s)
&= \sum_{n=1}^{\infty} \frac{1}{(4n)^s} \left[ \exp\left( s \log \left( \frac{4n}{4n+1} \right) \right) - 1 \right] \left[ \log (4n) - \log \left(\frac{4n}{4n+1} \right) \right] \\
&= \sum_{n=1}^{\infty} \frac{1}{(4n)^s} \left[ - \frac{s}{4n} + O \left(\frac{s^2}{n^2} \right) \right] \left[ \log (4n) + O \left(\frac{1}{n} \right) \right] \\
&= -s 2^{-2s-2} \sum_{n=1}^{\infty} \frac{1}{n^{s+1}} \log (4n) + O(s) \\
&= s 2^{-2s-2} \left[ \zeta'(s+1) - \zeta(s+1) \log 4 \right] + O(s).
\end{align*}
Similar consideration also shows that
\begin{equation*} C(s) = s 2^{-2s-2} \left[ \zeta'(s+1) - \zeta(s+1) \log 4 \right] + O(s). \end{equation*}
Thus we have
\begin{equation*} 2^{-2s-1}\zeta(s+1) + B(s) + C(s) = 2^{-2s-1} \left[ \zeta(s+1) + s \zeta'(s+1) - s \zeta(s+1) \log 4 \right] + O(s). \end{equation*}
But since
\begin{equation*} \zeta(s+1) = \frac{1}{s} + \gamma + O(s), \end{equation*}
we have
\begin{equation} \lim_{s\downarrow 0} \left( 2^{-2s-1}\zeta(s+1) + B(s) + C(s) \right) = \frac{\gamma}{2} - \log 2. \label{eqn:inter_1} \end{equation}
For \( A(s) \), the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that
\begin{equation*} \lim_{s\downarrow 0} A(s) = \sum_{n=1}^{\infty} \left[ \log \left( \frac{4n+1}{4n-1} \right) - \frac{1}{2n} \right]. \end{equation*}
Let \( L \) denote this limiting series. Then by Stirling's formula,
\begin{align}
e^{L}
& \stackrel{N\to\infty}{\sim} \prod_{n=1}^{N} \left( \frac{4n+1}{4n-1} \right) e^{-1/2n}
\sim \frac{e^{-\gamma/2}}{\sqrt{N}} \prod_{n=1}^{N} \left( \frac{n+(1/4)}{n-(1/4)} \right) \nonumber \\
& \sim \frac{e^{-\gamma/2}}{\sqrt{N}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{5}{4}\right)} \frac{\Gamma\left(N+\frac{5}{4}\right)}{\Gamma\left(N+\frac{3}{4}\right)}
\sim \frac{e^{-\gamma/2}}{\sqrt{N}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{5}{4}\right)} \frac{\left( \frac{N + (5/4)}{e} \right)^{N+\frac{5}{4}}}{\left( \frac{N + (3/4)}{e} \right)^{N+\frac{3}{4}}} \nonumber \\
& \sim e^{-\gamma/2} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{5}{4}\right)}
= 4 e^{-\gamma/2} \frac{\pi \sqrt{2}}{\Gamma\left(\frac{1}{4}\right)^2}, \label{eqn:inter_2}
\end{align}
where the last line follows from the Euler's reflection formula. Combining \eqref{eqn:inter_1} and \eqref{eqn:inter_2}, we obtain
\begin{equation} -\beta'(0) = \log (2 \pi \sqrt{2}) - 2 \log \Gamma\left(\frac{1}{4}\right) . \label{eqn:beta_prime_0} \end{equation}
Now taking logarithmic differntiation to the functional equation \eqref{eqn:func_eqn}, we have
\begin{equation*} \frac{\beta'(s)}{\beta(s)} = \log\left(\frac{\pi}{2}\right) - \psi_0 (1-s) - \frac{\pi}{2} \tan \left( \frac{\pi s}{2} \right) - \frac{\beta'(1-s)}{\beta(1-s)}. \end{equation*}
Taking \( s = 0 \), we have
\begin{equation*} \frac{\beta'(0)}{\beta(0)} = \log\left(\frac{\pi}{2}\right) + \gamma - \frac{\beta'(1)}{\beta(1)} \quad \Longrightarrow \quad \beta'(1) = \beta(1) \left[ \log\left(\frac{\pi}{2}\right) + \gamma - \frac{\beta'(0)}{\beta(0)} \right]. \end{equation*}
But again by \eqref{eqn:func_eqn}, we have \( \beta(0) = \frac{1}{2} \). Therefore, by \eqref{eqn:beta_prime_0}
\begin{equation*} \beta'(1) = \frac{\pi}{4} \left[ \gamma + 2 \log 2 + 3 \log \pi - 4 \log \Gamma\left(\frac{1}{4}\right) \right], \end{equation*}
and hence \eqref{eqn:int_1} becomes
\begin{equation*} \int_{0}^{1} \frac{\log \log (1/x)}{1+x^2} \; dx = \frac{\pi}{4} \left[ 2 \log 2 + 3 \log \pi - 4 \log \Gamma\left(\frac{1}{4}\right) \right]. \end{equation*}
References
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- 이항계수
- 린
- 오일러 적분
- Euler integral
- 미쿠
- 루카
- 계산
- Fourier Transform
- 편미방
- 해석학
- Coxeter
- Euler constant
- Integral
- 푸리에 변환
- 보컬로이드
- 적분
- 수학
- binomial coefficient
- 오일러 상수
- Gamma Function
- 제타함수
- 무한급수
- 감마함수
- Zeta function
- 대수기하
- 렌
- Beta function
- 유머
- 노트
- infinite summation
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함