티스토리 뷰
(2011 SEEMOUS Mathematical Competition, Problem 3) Show that for any three unit vectors \( \hat{a}\), \(\hat{b}\) and \(\hat{c}\),
\begin{equation*} \langle \hat{a}, \hat{c} \rangle^2 + \langle \hat{b}, \hat{c} \rangle^2 \leq 1 + | \langle \hat{a}, \hat{b} \rangle| \end{equation*}
Proof. Decompose
\begin{align*}
\hat{a} &= \cos \alpha \, \hat{c} + \sin \alpha \, \hat{e}_{1},
\hat{b} &= \cos \beta \, \hat{c} + \sin \beta \, \hat{e}_{2},
\end{align*}
where \( \hat{e}_1 \) and \( \hat{e}_2 \) are unit vectors orthogonal to \( \hat{c} \). If \( \cos \alpha = 0 \) or \( \cos \beta = 0 \), there is nothing to proof. So assume not and let
\( s = \tan \alpha \), \( t = \tan \beta \) and \( \lambda = \langle \hat{e}_1, \hat{e}_2 \rangle \).
Then the inequality in question reduces to
\begin{equation*} \frac{1 - s^2 t^2}{\sqrt{(1 + s^2)(1 + t^2)}} \leq |1 + \lambda s t|. \end{equation*}
If \( |st| > 1 \), then this inequality always hold. So it suffices to show this when \( |st| \leq 1 \). In this case, we have \( 1 - |st| \leq | 1 + \lambda s t | \) and it suffices to prove that
\begin{equation*} \frac{1 - s^2 t^2}{\sqrt{(1 + s^2)(1 + t^2)}} \leq 1 - |s t|, \end{equation*}
which is a direct consequence of Cauchy-Schwart inequality applied to two vectors \( (1, |s|) \) and \( (1, |t|) \).
Corollary. (Generalization of Cauchy-Schwarz Inequality) For any \( a \), \( b \) and \( c \), we have
\begin{equation*} | \langle a, c \rangle \langle b, c \rangle| \leq \left( \frac{\| a \| \| b \| + | \langle a, b \rangle |}{2} \right) \| c \|^2. \end{equation*}
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- 적분
- Euler integral
- Integral
- Coxeter
- 루카
- Euler constant
- 노트
- 제타함수
- 이항계수
- 렌
- 계산
- 해석학
- 미쿠
- 감마함수
- binomial coefficient
- 푸리에 변환
- Fourier Transform
- 린
- 수학
- 대수기하
- Zeta function
- 편미방
- 무한급수
- 오일러 상수
- Beta function
- 유머
- Gamma Function
- 오일러 적분
- infinite summation
- 보컬로이드
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함