티스토리 뷰

Today we are going to prove the following equality.
Problem. Show that
Proof. Let denote this integral hereafter.

To achieve this, we first observe by double-angle formula that
Here, we used the transformation for each step. Then by symmetry, this is written as
Then by the identity
we have
Then we make change of variable to obtain
where denote the counterclockwised unit circle centered at the origin. Now let denote the innermost integrand of the above equality. To apply Cauchy integration formula, we have to find the pole inside the circle . So let and denote
respectively. Note that and are zeros of quadratic polynomials
and ,
respectively, so that
Now for , only and are contained in the interior of the disk bounded by . Thus by Cauchy integration formula, we have
To evaluate the integral in the right hand side, we note that
for , hence by analytic continuation, also for and . Then
뭐랄까, 이번에는 제가 자주 쓰던 테크닉 이외에도 복소 테크닉을 섞어서 계산해봤습니다. 하지만 무엇보다도 이번 계산의 백미는 맨 마지막에 아크탄젠트 값들이 점차 붕괴(?)되어서 결국 깔끔한 결과로 귀결되는 부분이지요.

그나저나 요즘 통 포스팅을 못해서 그런지 손님들이 줄고 있다는 사실을 체감합니다. 좀 더 분발해야겠어요.
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
«   2024/04   »
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
글 보관함