티스토리 뷰
Lemma 1. (Complex Gaussian Integral) Suppose $s \in \mathbb{C}$ satisfies $s \neq 0$ and $\Re (s) \geq 0$. Then
\[ \int_{-\infty}^{\infty} e^{-s x^2} \, dx = \sqrt{\frac{\pi}{s}}, \]
where $\sqrt{z} = \exp(\frac{1}{2} \text{Log} z)$ denotes the principal square root of $z \in \mathbb{C} - (-\infty, 0)$.
Pf. For $\Re (s) > 0$, the change of variable with $x = \sqrt{y}$ yields \[ \int_{-\infty}^{\infty} e^{-s x^2} \, dx \ = \ 2 \int_{0}^{\infty} e^{-s x^2} \, dx \ = \ \int_{0}^{\infty} y^{-1/2} e^{-s y} \, dy. \] Then we know from basic theory of Laplace transform that this is analytic for $\Re (s) > 0$. But for positive real $s$, this coincides with the holomorphic function \[ \frac{\Gamma \left( \frac{1}{2} \right)}{\sqrt{s}} \ = \ \sqrt{\frac{\pi}{s}}, \] so they must conicide in $\Re (s) > 0$ as well. So it remains the case $\Re (s) = 0$ and $s \neq 0$. Note that it suffices to show that \[ \int_{-\infty}^{\infty} e^{- i x^2} \, dx = e^{- i \pi / 4} \sqrt{\pi}, \] which is clear from a simple application of contour integration along the wedge contour.
Theorem 2. Let $s \in \mathbb{C}$ satisfy $s \neq 0$ and $\Re (s) \geq 0$. If $\beta \in \mathbb{R}$, then we have
\[ \int_{0}^{\infty} \exp \left( - s \left( x^2 + \frac{\beta^2}{x^2} \right) \right) \, dx \ = \ \frac{1}{2} \sqrt{\frac{\pi}{s}} e^{-2 |\beta| s}. \]
Pf. If $\beta = 0$, this reduces to the Lemma 1. So we may assume $\beta > 0$. Let's deonte the integral in question $I(\beta)$. Then the substitution $x \mapsto \beta / x$ yields \[ I(\beta) \ = \ \int_{0}^{\infty} \frac{\beta}{x^2} \exp \left( - s \left( x^2 + \frac{\beta^2}{x^2} \right) \right) \, dx. \] Then \[ I(\beta) \ = \ \frac{1}{2}I(\beta) + \frac{1}{2}I(\beta) \ = \ \frac{1}{2} \int_{0}^{\infty} \left( 1 + \frac{\beta}{x^2} \right) \exp \left( - s \left( x^2 + \frac{\beta^2}{x^2} \right) \right) \, dx. \] Finally, put $u = x - \beta / x$. Then this becomes
\[ I(\beta) = \frac{1}{2} e^{-2s\beta} \int_{-\infty}^{\infty} e^{- s u^2} \, du, \] from which we deduce the desired identity.
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- Zeta function
- binomial coefficient
- 유머
- Coxeter
- infinite summation
- 오일러 적분
- 미쿠
- 루카
- Euler integral
- 린
- Beta function
- 렌
- 오일러 상수
- 푸리에 변환
- 대수기하
- 이항계수
- 편미방
- 해석학
- 수학
- Integral
- 제타함수
- 계산
- Gamma Function
- 보컬로이드
- Euler constant
- 무한급수
- Fourier Transform
- 노트
- 적분
- 감마함수
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
글 보관함