티스토리 뷰
Problem. Prove the following identities.
\begin{equation}\label{eqn:wts}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3 \binom{2n}{n}} = \frac{2}{5} \zeta(3), \qquad
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3 2^n \binom{2n}{n}} = \frac{1}{4} \zeta(3) - \frac{1}{6}\log^3 2
\end{equation}
We divide the proof into several lemmas.
Lemma 1. For $|x| < 1$.
\begin{equation}\label{eqn:wts_lem_1}
\int_{0}^{x} \frac{\mathrm{arcsinh}^2 t}{t} \, dt = \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3 \binom{2n}{n}} (2x)^{2n}.
\end{equation}
Proof. Let $A_n$ and $B_n$ be the sequence of rational numbers defined as follows:
\begin{equation*}
A_0 = 1, \quad A_{n} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}, \qquad B_n = \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{3 \cdot 5 \cdot 7 \cdots (2n+1)}
\end{equation*}
Then we claim that
\begin{equation*}
A_{n+1} = \sum_{k=0}^{n} \frac{A_k A_{n-k}}{2k+2}, \quad B_{n} = \sum_{k=0}^{n} \frac{A_k A_{n-k}}{2k+1}.
\end{equation*}
The first equality is easily deduced, since
\begin{equation*}
\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{\infty} A_n x^n \quad \text{and} \quad \sqrt{1-x} = 1 - x \sum_{n=0}^{\infty} \frac{A_n}{2n+2} x^n.
\end{equation*}
The second equality can be shown by induction. Clearly, it holds for $n = 0$. Now assume it holds for $n$. Then
\begin{align*}
& \sum_{k=0}^{n+1} \frac{A_k A_{n+1-k}}{2k+1} \\
& = \frac{A_{n+1}}{2n+3} + \sum_{k=0}^{n} \frac{A_k A_{n-k}}{2k+1} \left( 1 - \frac{1}{2n+2-2k} \right) \\
& = \frac{A_{n+1}}{2n+3} + B_n - \frac{1}{2n+3} \sum_{k=0}^{n} A_k A_{n-k} \left( \frac{1}{2k+1} + \frac{1}{2n+2-2k} \right) \\
& = \frac{A_{n+1}}{2n+3} + \frac{2n+2}{2n+3} B_n - \frac{1}{2n+3} \sum_{k'=0}^{n} \frac{A_{k'} A_{n-k'}}{2k'+2} \qquad (k' = n-k) \\
& = B_{n+1}
\end{align*}
as desired. But since
\begin{equation*}
B_{n-1} = \frac{2^{2n-1}}{n \binom{2n}{n}},
\end{equation*}
we have
\begin{equation*}
\frac{\mathrm{arcsinh} \, x}{\sqrt{1+x^2}} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \binom{2n}{n}} (2x)^{2n-1},
\end{equation*}
which leads to \eqref{eqn:wts_lem_1}.
Lemma 2. Let $\phi = \frac{1+\sqrt{5}}{2}$ be the golden ratio. Then
\begin{eqnarray*}
\mathrm{Li}_2 \big( \tfrac{1}{\phi^2} \big) & = & \frac{2}{5} \zeta(2) - \log^2 \phi \\
\mathrm{Li}_3 \big( \tfrac{1}{\phi^2} \big) & = & \frac{4}{5} \zeta(3) - \frac{4}{5} \zeta (2) \log \phi + \frac{2}{3} \log^3 \phi \\
\mathrm{Li}_2 \left( \tfrac{1}{2} \right) & = & \frac{1}{2} \zeta(2) - \frac{1}{2} \log^2 2 \\
\mathrm{Li}_3 \left( \tfrac{1}{2} \right) & = & \frac{7}{8} \zeta(3) - \frac{1}{2} \zeta (2) \log 2 + \frac{1}{6} \log^3 2
\end{eqnarray*}
Proof. These are consequences of the following identities:
- For $z \notin (-\infty, 0) \cup (1, \infty)$, \begin{equation*} \mathrm{Li}_2 (z) + \mathrm{Li}_2 (1-z) = \zeta(2) - \log z \log (1-z). \end{equation*}
- For $z \notin (-\infty, 0]$, \begin{equation*} \mathrm{Li}_2 (1-z) + \mathrm{Li}_2 \big(1-\tfrac{1}{z}\big) = - \frac{1}{2} \log^2 z \end{equation*}
- For $|z| < 1$, \begin{equation*} \mathrm{Li}_s (z) + \mathrm{Li}_s (-z) = 2^{1-s} \mathrm{Li}_s (z^2) \end{equation*}
- For $z \notin (-\infty, 0] \cup (1, \infty)$, \begin{equation*} \mathrm{Li}_3 (z) + \mathrm{Li}_3 (1-z) + \mathrm{Li}_3 \big(1 - \tfrac{1}{z} \big) = \zeta(3) + \zeta(2) \log z + \frac{1}{6} \log^3 z - \frac{1}{2} \log^2 z \log (1-z) \end{equation*} For example, plugging $z = \frac{1}{\phi}$ to these equalities and using the relation $\phi^2 - \phi - 1 = 0$ gives the linear system of equations \begin{align*} \mathrm{Li}_2 \big( \tfrac{1}{\phi} \big) + \mathrm{Li}_2 \big( \tfrac{1}{\phi^2} \big) & = \zeta(2) - 2 \log^2 \phi \\ \mathrm{Li}_2 \big( \tfrac{1}{\phi^2} \big) + \mathrm{Li}_2 \big( -\tfrac{1}{\phi} \big) & = -\frac{1}{2} \log^2 \phi \\ \mathrm{Li}_2 \big( \tfrac{1}{\phi} \big) + \mathrm{Li}_2 \big( -\tfrac{1}{\phi} \big) - \frac{1}{2} \mathrm{Li}_2 \big( \tfrac{1}{\phi^2} \big) & = 0 \end{align*} and \begin{align*} \mathrm{Li}_3 \big( \tfrac{1}{\phi} \big) + \mathrm{Li}_3 \big( \tfrac{1}{\phi^2} \big) + \mathrm{Li}_3 \big( -\tfrac{1}{\phi} \big) & = \zeta(3) - \zeta(2) \log \phi - \frac{5}{6} \log^3 \phi \\ \mathrm{Li}_3 \big( \tfrac{1}{\phi} \big) + \mathrm{Li}_3 \big( -\tfrac{1}{\phi} \big) & = \frac{1}{4} \mathrm{Li}_3 \big( \tfrac{1}{\phi^2} \big), \end{align*} which give rise to two first equalities. Similarly, plugging $z = \frac{1}{2}$ gives two other equalities.
Solution of the Problem. Using the substitution $t = \frac{u^2-1}{2u}$ to the integral in Lemma 1, we have
\begin{equation*}
\int_{0}^{x} \frac{\mathrm{arcsinh}^2 t}{t} \, dt = - \int_{1}^{x+\sqrt{x^2+1}} \left( \frac{2u}{1-u^2} + \frac{1}{u} \right) \log^2 u \, du.
\end{equation*}
Now let's consider the function $F(s)$, defined for $s > 0$ by
\begin{equation*}
F(s) = - \int_{1}^{s} \left( \frac{2u}{1-u^2} + \frac{1}{u} \right) \log^2 u \, du.
\end{equation*}
(Here, $F(s)$ is used to denote a new function and is not intended to refer to the elliptic integral.) It is easy to show that $F(s) = F(1/s)$, thus we may assume $0 < s < 1$. Then expanding the rational function part of the integrand and integrating term by term immediately yields
\begin{equation*}
F(s) = -\frac{1}{3} \log^3 s + \log (1-s^2) \log^2 s + \mathrm{Li}_2 (s^2) \log s + \frac{1}{2} \zeta(3) - \frac{1}{2} \mathrm{Li}_3 (s^2).
\end{equation*}
Then
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3 \binom{2n}{n}} = 4 \int_{0}^{\frac{1}{2}} \frac{\mathrm{arcsinh}^2 t}{t} \, dt = 4 F(\phi) = 4 F \left( \frac{1}{\phi} \right)
\end{equation*}
and Lemma 2 yields the first identity. Similarly,
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3 2^n \binom{2n}{n}} = 4 \int_{0}^{\frac{1}{2\sqrt{2}}} \frac{\mathrm{arcsinh}^2 t}{t} \, dt = 4 F(\sqrt{2}) = 4 F \left( \frac{1}{\sqrt{2}} \right)
\end{equation*}
and again Lemma 2 yields the second identity, completing the proof of \eqref{eqn:wts}.
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- Fourier Transform
- 유머
- Beta function
- 미쿠
- 수학
- Zeta function
- 편미방
- Gamma Function
- 푸리에 변환
- 감마함수
- 노트
- infinite summation
- 린
- binomial coefficient
- 적분
- Coxeter
- Euler constant
- 루카
- Integral
- 렌
- 무한급수
- 계산
- 오일러 적분
- 해석학
- 대수기하
- 제타함수
- 오일러 상수
- Euler integral
- 보컬로이드
- 이항계수
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함