수학 얘기/일반
여기저기서 줏어온 문제들...
sos440
2013. 3. 25. 15:38
요즘 StackExchange에서 노닥거리다가 줏은 문제 몇 개를 조금씩 각색해서 올려봅니다.
Problem 1.Let $(a_n)$ and $(b_n)$ be sequences of non-negative real numbers which are not identically zero. Also, let $(c_n)$ be the Cauchy product of these sequences:
$$ c_n = (a \ast b)_{n} = \sum_{k=0}^{n} a_k b_{n-k}. $$Prove that
$$ \limsup_{n\to\infty} c_{n}^{1/n} = \max \left\{ \limsup_{n\to\infty} a_{n}^{1/n}, \limsup_{n\to\infty} b_{n}^{1/n} \right\}. $$Problem 2. Let $f : \Bbb{R} \to \Bbb{R}$ be a function such that
$\displaystyle \sum f(a_n)$ converges whenever $\displaystyle \sum a_n$ converges.
Prove that $f$ is linear near $x = 0$.
Proof. Refer to the following attachment:
Problem 3. Solve the functional equation
$$ f(f(x)) - 2f(x) + x = 0, \quad \forall x \in \Bbb{R}$$where $f : \Bbb{R} \to \Bbb{R}$ is continuous.
Problem 4. Find the limit
$$ \lim_{n\to\infty} \frac{1}{\log n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{j+k}{j^3 + k^3}.$$